Materials Science

, Volume 54, Issue 2, pp 223–229 | Cite as

Laser-Stimulated Phase Transformations in Thin Layers of SiOx and CNx –Ni

  • L. L. FedorenkoEmail author
  • A. M. Prudnikov
  • A. A. Evtukh
  • A. P. Medvid’
  • O. V. Steblova
  • P. A. Onufriev
  • A. A. Korchovyi
  • V. S. Uvarov

We demonstrate the possibility of laser-assisted phase transformations in thin layers of SiOx from the amorphous nonstoichiometric phase into a nanocomposite layer with Si nanocrystals embedded in the silicon-oxide matrix. The formation of Si nanoparticles (NPs) in SiOx films occurs due to their irradiation with nanosecond pulses of a Nd+3:YAG laser with base wavelength λ = 1.064 μm and the second harmonic λ = 0.532 μm. The nanostructurization of the surface in the form of nanoparticles with mean sizes varying within the range 5–85 nm was detected with the help of atomic force microscopy and optical transmission spectra. The sizes of nanoparticles and their surface distribution depend on the intensity of the laser and its wavelength λ. We determined the mechanism of formation of Si nanocrystals by laser-induced thermal shocks. By analyzing the results of atomic force microscopy, as well as the data of Raman and polarization-modulation spectroscopies, we detected the increase in the amount of single-crystal phase in the film of CNx–Ni nanocomposite with simultaneous increase in the sizes of CNx–Ni nanoparticles caused by the action of laser pulses. The mechanism of laser-stimulated nanocrystallization is proposed. This mechanism is based on the local annealing of the CNx shell as a result of laser heating of the metallic Ni core of CNx–Ni nanoparticles and a more intense sublimation of the amorphous phase of CNx–Ni due to the lower temperature of dissociation of the CNx shell as compared with the Ni core.


silicon oxide carbon nitride laser nanoparticle nanocomposite layer 


The present work was supported by the National Academy of Sciences of Ukraine and the Latvian National Research Program in Materials Science (IMIS2) (2014–2017).


  1. 1.
    M. Boutinguiza, B. Rodriguez-Gonzalez, J. del Val, R. Comesana, F. Lusquinos, and J. Pou, “Laser-assisted production of spherical TiO2 NPs in water,” Nanotechnology, 22, No. 19, 5606 (2011).CrossRefGoogle Scholar
  2. 2.
    A. V. Kabashin and M. Meunier, “Laser-assisted methods for nanofabrication,” SPIE USE, 6, 1–13 (2004).Google Scholar
  3. 3.
    M. Muniz-Miranda, C. Gellini, E. Giorgetti, G. Margheri, P. Marsili, L. Lascialfari, L. Becucci, S. Trigari, and F. Giammanco, “Laser-assisted methods for nanofabrication,” Thin Solid Films, 543, 118–121 (2013).CrossRefGoogle Scholar
  4. 4.
    M. Hiramatsu, H. Ogawa, M. Jyumonji, T. Katou, N. Akita, M. Matsumura, “An advanced sample structure for large-grain growth by excimer laser crystallization,” J. Electrochem. Soc., 153, No. 10, G883–G886 (2006).CrossRefGoogle Scholar
  5. 5.
    V. M. Kadan, I. Z. Indutnyi, V. A. Dan’ko, P. E. Shepelyavyi, I. M. Dmitruk, P. I. Korenyuk, and I. V. Blonsky, “Influence of trap states on the kinetics of luminescence and induced light absorption by Si NPs in a SiO2 matrix at their excitation with femtosecond laser pulses,” Ukr. Fiz. Zh., 58, 20–25 (2013).Google Scholar
  6. 6.
    A. K. Al-Kamal, Synthesis of Ag-doped TiO2 NPs by Combining Laser Decomposition of Titanium Isopropoxide and Ablation of Ag For Dye-Sensitized Solar Cells, Thesis Submitted to the Graduate School–New Brunswick Rutgers, State University of New Jersey, New Brunswick (2015).Google Scholar
  7. 7.
    Gy. J. Kovács, M. Veres, M. Koós, and G. Radnóczi, “Raman spectroscopic study of magnetron sputtered carbon–nickel and carbon nitride–nickel composite films: the effect of nickel on the atomic structure of the C/CNx matrix,” Thin Solid Films, 516, 910–7915 (2008).Google Scholar
  8. 8.
    A. Y. Liu and M. L. Cohen, “Prediction of new low compressibility solids,” Science, 245, 841–842 (1989).CrossRefGoogle Scholar
  9. 9.
    V. Litovchenko, “Analysis of the band structure of tetrahedral diamond-like crystals with valence bonds: Prediction of materials with superhigh hardness and negative electron affinity,” Phys. Rev., 65, 153108-2-5 (2002).Google Scholar
  10. 10.
    J. Robertson, “Ultrathin carbon coatings for magnetic storage technology,” Thin Solid Films, 383, 81–88 (2001).CrossRefGoogle Scholar
  11. 11.
    L. M. Zambov, C. Popov, N. Abedinov, M. F. Plass, W. Kulish, T. Gotszalk, P. Grabiec, I. W. Rangelow, and R. Kassing, “Gassensitive properties of nitrogen-rich carbon nitride films,” Advanced Mater., 12, No. 9, 656–660 (2000).CrossRefGoogle Scholar
  12. 12.
    Yu. S. Nechaev, “On the nature, kinetics, and limit values of the sorption of hydrogen by carbon nanostructures,” Uspekhi Fiz. Nauk, 176, No. 6, 581–610 (2006).CrossRefGoogle Scholar
  13. 13.
    O. Steblova, A. Evtukh, O. Bratus, L. Fedorenko, M. Voitovich, O. Lytvyn, O. Gavrylyuk, and O. Semchuk, “Transformation of SiOx films into nanocomposite SiO2 (Si) films under thermal and laser annealing,” Semiconduct. Phys., Quant. Electr. Optoelectr., 17, No. 3, 295–300 (2014).CrossRefGoogle Scholar
  14. 14.
    L. Fedorenko, A. Medvid’, M. Yusupov, V. Yukhimchuck, S. Krylyuk, and A. Evtukh, “Nanostructures on SiC surface created by laser microablation,” Applied Surface Sci., 254, 2031–2036 (2008).CrossRefGoogle Scholar
  15. 15.
    L. I. Berezhinsky, L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega, “Polarization-modulation spectroscopy of surface plasmon resonance,” Optics Spectroscop., 105, No. 2, 281–289 (2008).CrossRefGoogle Scholar
  16. 16.
    A. Medvid’, L. Fedorenko, and V. Snitka, “The mechanism of generation of donor centers in p-InSb by laser radiation,” Applied Surface Sci., 142, 280–285 (1999).CrossRefGoogle Scholar
  17. 17.
    V. Neimash, P. Shepeliavyi, G. Dovbeshko, A. Goushcha, M. Isaiev, V. Melnyk, O. Didukh, and A. Kuzmich, “Nanocrystals growth control during laser annealing of Sn: (α -Si) composites,” J. Nanomaterials [Electronic Resource], (2016); available at:
  18. 18.
    F. G. Shi, “Size-dependent thermal vibrations and melting in nanocrystals,” J. Mater. Res., 9, No. 5, 1307–1313 (1994).CrossRefGoogle Scholar
  19. 19.
    A. M. Prudnikov, A. I. Linnik, R. V. Shalaev, V. V. Rumyantsev, A. O. Kucherik, A. P. Alodzhants, and S. M. Arakelyan, “Specific features of the formation and modification of nanostructural carbon-nitride films,” Nanosist.: Fiz., Khim., Mat., 3, No. 6, 134–145 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. L. Fedorenko
    • 1
    Email author
  • A. M. Prudnikov
    • 2
  • A. A. Evtukh
    • 1
  • A. P. Medvid’
    • 3
  • O. V. Steblova
    • 4
  • P. A. Onufriev
    • 3
  • A. A. Korchovyi
    • 1
  • V. S. Uvarov
    • 2
  1. 1.Lashkarev Institute of Semiconductor PhysicsUkrainian National Academy SciencesKievUkraine
  2. 2.Galkin Donetsk Physicotechnical InstituteUkrainian National Academy SciencesKievUkraine
  3. 3.Riga Technical UniversityRigaLatvia
  4. 4.T. Shevchenko Kiev National UniversityKievUkraine

Personalised recommendations