Skip to main content

Advertisement

Log in

Evaluation of the Residual Service Life of Thin-Walled Structural Elements with Short Corrosion-Fatigue Cracks

  • Published:
Materials Science Aims and scope

On the basis of the energy approach, we develop a computational model for the evaluation of the period of subcritical growth of corrosion-fatigue short cracks in elastoplastic plates under the action of long-term cyclic loads and corrosive media in terms of the specific energy components. The results are compared with the available literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. O. N. Romaniv, S. Ya. Yarema, G. N. Nikiforchin, N. A. Makhutov, and M. M. Stadnik, Fatigue and Cyclic Crack Resistance of Structural Materials [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  2. G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, New York (1979).

    Google Scholar 

  3. I. M. Dmytrakh and V. V. Panasyuk, Influence of Corrosive Media on the Local Fracture of Metals near Stress Concentrators [in Ukrainian], Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine (1999).

    Google Scholar 

  4. R. O. Ritchie and S. Suresh, “Mechanics and physics of the growth of small cracks,” AGARD Conf. Proc., No. 328, l.l–1.14 (1983).

  5. K. J. Miller, “The behavior of short fatigue cracks and their initiation. Part II. A general summary,” Fatigue Fract. Eng. Mater. Struct., 10, 93–113 (1987).

    Article  Google Scholar 

  6. E. I. Kryzhanivs'kyi, R. S. Hrabovs'kyi, and O. M. Mandryk, “Estimation of the serviceability of oil and gas pipeline after long-term operation according to the parameters of their defectiveness,” Fiz.-Khim. Mekh. Mater., 49, No. 1, 105–110 (2013); English translation : Mater. Sci., 49, No. 1, 117– 123 (2013).

  7. D. Daidson, K. Chan, R. McClung, and S. Hudak, “Small fatigue cracks,” Compr. Struct. Integr., 4, 129–164 (2003).

    Article  Google Scholar 

  8. K. Tanaka and Y. Akiniwa, “Modeling of fatigue crack growth: mechanistic models,” Compr. Struct. Integr., 4, 165–189 (2003).

    Article  Google Scholar 

  9. O. M. Herasymchuk and O. V. Kononychenko, “A model for the prediction of the fatigue durability of titanium alloys. Part 1. Development of a model of fatigue durability before the initiation of a microstructurally short crack and a model of growth of physically small and long cracks,” Probl. Prochn., No. 1, 64–79 (2013).

  10. H. Nisitani and N. Kawagoishi, “Fatigue crack growth law in small cracks and its application to the evaluation of fatigue life,” Trans. Jap. Soc. Mech. Eng. A, 49, 431–440 (1983).

    Article  Google Scholar 

  11. D. Taylor and J. F. Knott, “Fatigue crack propagation behavior of short cracks; the effect of microstructure,” Fatigue Eng. Mater. Struct., 4, 147–155 (1981).

    Article  Google Scholar 

  12. N. Kawagoishi, H. Nisitani, and T. Toyohiro, “Minimum fatigue crack length for application of small-crack growth law,” JSME Int. Jour. Ser. I, 35, 234–240 (1992).

    Google Scholar 

  13. H. Nisitani and M. Goto, “Effect of stress ratio on the propagation of small crack of plain specimens under high and low stress amplitudes (Fatigue under axial loading of annealed 0.45% C steel),” Trans. Jap. Soc. Mech. Eng. A, 50, 1090–1096 (1984).

    Article  Google Scholar 

  14. H. Nisitani and M. Goto, “Relation between small-crack growth law and fatigue life of machines and structures,” Trans. Jap. Soc. Mech. Eng. A, 51, 332–341 (1985).

    Article  Google Scholar 

  15. M. Goto, T. Maehata, H. Nisitani, and H. Miyagawa “Small-crack growth behavior of annealed 0.34% C steel plain specimens in oil environments,” Trans. Jap. Soc. Mech. Eng. A, 58, 348–352 (1992).

    Article  Google Scholar 

  16. N. Kawagoishi, H. Nisitani, M. Goto, T. Toyohiro, and S. Kitayama, “Statistical investigation of the fatigue life based on smallcrack growth law,” Trans. Jap. Soc. Mech. Eng. A, 59, 57–61 (1993).

    Article  Google Scholar 

  17. A. Carpinteri (editor), Handbook of Fatigue Propagation in Metallic Structures, Elsevier, Oxford (1994).

    Google Scholar 

  18. H. Nisitani, N. Kawagoishi, and M. Goto, “Growth behavior of small fatigue cracks and relating problems,” in: A. Carpinteri (editor), Handbook of Fatigue Propagation in Metallic Structures, Elsevier, Oxford (1994), pp. 733–778.

    Google Scholar 

  19. P. V. Popovych, O, Ts’on’, and T. Dovbush, “Influence of working media on the propagation of surface corrosion-fatigue cracks in structural elements of agricultural machines,” Visn. Tern. Nats. Tekh. Univ., No. 3(75), 157–166 (2014).

  20. O. E. Andreikiv, I. Ya. Dolinska, A. R. Lysyk, and N. B. Sas, “The calculation model of propagation of corrosion-mechanical cracks at high temperatures,” Fiz.-Khim. Mekh. Mater., 52, No. 5, 99–105 (2016); English translation : Mater. Sci., 53, No. 1, 34–40 (2017).

  21. A. E. Andreikiv and A. I. Darchuk, Fatigue Fracture and Durability of Structures [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  22. N. S. Shtayura, “Determination of the residual strength of thin-walled structural elements with short cracks,” Nauk. Notat., No. 57, 184–189 (2017).

  23. O. Andreikiv, O. Hembara, O. Tsyrulnyk, and L. Nyrkova, “Estimation of local damage to pipes of main gas pipelines under the conditions of soil corrosion,” Fiz.-Khim. Mekh. Mater., Special Issue, No. 9, Vol. 2, 636–641 (2012).

  24. O. E. Andreikiv, O. V Hembara, O. T. Tsyrulnyk, and L. I. Nyrkova “Evaluation of the residual lifetime of a section of a main gas pipeline after long-term operation,” Fiz.-Khim. Mekh. Mater., 48, No. 2, 103–110 (2012); English translation : Mater. Sci., 48, No. 2, 231–238 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Shtayura.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 53, No. 4, pp. 84–90, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreikiv, O.E., Lysyk, A.R., Shtayura, N.S. et al. Evaluation of the Residual Service Life of Thin-Walled Structural Elements with Short Corrosion-Fatigue Cracks. Mater Sci 53, 514–521 (2018). https://doi.org/10.1007/s11003-018-0104-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-018-0104-4

Keywords

Navigation