Skip to main content
Log in

Fatigue of Sintered Porous Materials Based on 316L Stainless Steel Under Uniaxial Loading

  • Published:
Materials Science Aims and scope

We present the results of fatigue tests of sintered porous 316L austenitic stainless steel with different porosities. The parameters obtained from the hysteresis loop in a load cycle (the changes in the value of Young’s modulus and the maximum and minimum stresses) are analyzed. The fatigue life of the porous materials with variable density is determined according to the Manson–Coffin relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Chawla and X. Deng, “Microstructure and mechanical behavior of porous sintered steel,” Mat. Sci. Eng., A390, 98–112 (2005).

    Article  Google Scholar 

  2. H. Khorsand, S. M. Habibi, K. Janghorban, H. Yoozbashizade, and S. M. S. Reihani, “Fatigue of sintered steels (Fe–1.5Mo–3Mn–0.7C),” Mater. Struct., 37, 335–341 (2004).

    Google Scholar 

  3. K. V. Sudhakar, “Fatigue behavior of a high density powder metallurgy steel,” Int. J. Fatigue, 22, 729–734 (2000).

    Article  Google Scholar 

  4. M. M. Dewidar, K. A. Khalil, and J. K. Lim, “Processing and mechanical properties of porous 316L stainless steel for biomedical applications,” Trans. Nonferrous Metals Soc. China, 17, 468–473 (2007).

    Article  Google Scholar 

  5. M. Grądzka-Dahlke, J. R. Dąbrowski, and B. Dąbrowski, “Characteristic of the porous 316 stainless steel for the friction element of prosthetic joint,” Wear, 263, 1023–1029 (2007).

    Article  Google Scholar 

  6. N. Kurgan and R. Varol, “Mechanical properties of P/M 316L stainless steel materials,” Powder Technol., 201, 242–247 (2010).

    Article  Google Scholar 

  7. G. Ryan, A. Pandit, and D. P. Apatsidis, “Fabrication methods of porous metals for use in orthopeadic applications,” Biomaterials, 27, 2651–2670 (2006).

    Article  Google Scholar 

  8. C. Verdu, S. Carabajar, G. Lormand, and R. Fougères, “Fatigue crack growth characterization and simulation of porous steel,” Mat. Sci. Eng., A319321, 544–549 (2001).

  9. S. H. Teoh, “Fatigue of biomaterials: a review,” Int. J. Fatigue, 22, 825–837 (2000).

    Article  Google Scholar 

  10. L. A. Dobrzański, Leksykon Materiałoznawstwa. Praktyczne Zestawienie Norm Polskich, Zagranicznych i Międzynarodowych, Verlag Dashofer, Warszawa (2012).

  11. ASTM E606-80/ E 606M-12 Standard Test Method for Strain-Controlled Fatigue Testing.

  12. L. R. Coffin, “A study of the effects of cyclic thermal stresses on ductile metal,” Trans. ASME, 76, 931–950 (1954).

    Google Scholar 

  13. S. S. Manson, Behavior of Materials under Conditions of Thermal Stress, NACA TN-2933 (1953).

  14. J. D. Morrow, “Cyclic plastic stain energy and fatigue of metals,” in: Internal Friction Damping and Cyclic Plasticity, ASTM STP378 (1965), pp. 45–84.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Falkowska.

Additional information

Published in Fizyko-Khimichna Mekhanika Materialiv, Vol. 51, No. 2, pp. 53–58, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falkowska, A., Seweryn, A. Fatigue of Sintered Porous Materials Based on 316L Stainless Steel Under Uniaxial Loading. Mater Sci 51, 200–207 (2015). https://doi.org/10.1007/s11003-015-9829-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-015-9829-5

Keywords

Navigation