Skip to main content
Log in

Effect of Plastic Prestraining of 25 Steel on the Diffusion Saturation of its Surface with Boron and Carbon

  • Published:
Materials Science Aims and scope

It is shown that plastic prestraining intensifies the diffusion of carbon and boron. We obtain boron-cemented layers with homogeneous structure and improved physicochemical properties hardened with finely divided boron carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. G. Avakumov, Mechanical Methods for the Intensification of Chemical Processes [in Russian], Nauka, Novosibirsk (1986).

    Google Scholar 

  2. I. N. Kidin, G.V. Shcherbedinskii, and V. I. Andryushechkin, “Influence of cold plastic prestraining on the diffusion of carbon in austenite,” Metalloved. Term. Obrab. Met., No. 12, 26–29 (1981).

    Google Scholar 

  3. Yu. M. Lakhtin, V. D. Kal’ner, V. K. Sedukov, and T. A. Smirnova, “Effect of cold plastic prestraining on the cementation of steel,” Metalloved. Term. Obrab. Met., No. 12, 22–27 (1971).

    Google Scholar 

  4. V. P. Glukhov, Boride Coatings on Iron and Steels [in Russian], Naukova Dumka, Kiev (1970).

    Google Scholar 

  5. S. V. Tverdokhlebova, I. M. Spiridonova, and A. M. Bondarenko, “Spectral analysis of boron-containing alloys,” Zavod. Lab., No. 11, 46–49 (1990).

    Google Scholar 

  6. S. V. Tverdokhlebova, “Spectrometry of boron-containing alloys,” Visn. Dnipr. Nats. Univ. Ser. Fiz. Radioelektron., Issue 14, No. 12/1, 100–104 (2007).

  7. S. V. Tverdokhlebova and I. M. Spiridonova, Method of Visual Quantitative Spectral Determination of Carbon in Current-Conducting Alloys [in Russian], Patent No. 2011967 (Rospatent) S23S, 8/06, Publ. on 15.06.1994, Bull. No. 8.

  8. N. V. Novikov, S. N. Dub, and S. I. Bulychov, “Methods of microtesting for crack resistance,” Zavod. Lab., No. 7, 60−67 (1988).

    Google Scholar 

  9. W. Fu, X. Yi, Zhao, Y. Li, T. Furuha, and T. Maki, “Microstructural evolution of pearlite in eutectoid Fe–C alloys during severe cold rolling,” J. Mater. Sci. Technol., 21, No. 1, 25–28 (2005).

    Google Scholar 

  10. M. Umemoto, Y. Todaka, and K. Tsuchiya, “Mechanical properties of cementite and fabrication of artificial pearlite,” Mater. Sci. Forum, 426–432, 859–864 (2003).

    Article  Google Scholar 

  11. X. Sauvage and Y. Ivanisenko, “The role of carbon segregation on nanocrystallization of pearlitic steels processed by severe plastic deformation,” J. Mater. Sci., 42, No. 5,1615–162 (2007)1.

  12. D. C. Jiles, “Magnetic properties and microstructure of AISI 1000 series carbon steels,” J. Phys. D: Appl. Phys., 21, 1186–1195 (1988).

    Article  Google Scholar 

  13. È. S. Gorkunov, V. M. Somova, T. P. Tsar’kova et al., “Interconnection of the coercive force, chemical composition, and microstructure of annealed steels,” Defektoskopiya, No. 8, 31–49 (1997).

    Google Scholar 

  14. M. A. Krishtal and A. I. Volkov, Multicomponent Diffusion in Metals [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  15. E. N. Akimov, I. I. Gorbachov, and V. V. Popov, “Solution of the problems of multicomponent diffusion with the help of a parallel algorithm of matrix running,” Matem. Model., 17, No. 9, 85–92 (2005).

    Google Scholar 

  16. M. A. Krishtal, Mechanism of Diffusion in Iron Alloys [in Russian], Metallurgiya, Moscow (1972).

    Google Scholar 

  17. J. Korecký, Cementation of Steel [in Czech], Státni Naklad. Techn. Lit., Praha (1957).

    Google Scholar 

  18. A. P. Gulyaev, Metal Science [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  19. E. M. Grinberg and G. G. Laricheva, “Effect of boron on the structure of carbon and low-carbon steels produced in the course of low-rate cooling,” Metalloved. Term. Obrab., No. 3, 28–31 (1991).

  20. N. Yu. Filonenko, L. I. Fedorenkova, and I. M. Spiridonova, “Effect of the deformation action on the diffusion of boron in a medium-carbon alloy,” Fiz. Tekh. Vys. Davl., 20, No. 1, 102–109 (2010).

    Google Scholar 

  21. S. Z. Bokshtein, Diffusion and Structure of Metals [in Russian], Metallurgiya, Moscow (1973).

    Google Scholar 

  22. I. F. Tkachenko and F. K. Tkachenko, “On the mechanism of influence of boron on the kinetics of decay of supercooled austenite,” Izv. Vyssh. Uchebn. Zaved. Ferrous Met., No. 2, 32–35 (1998).

  23. V. G. Gavrilova, I. F. Tkachenko, and A. V. Belostochnyi, “On the type of dissolution of boron in austenite and its interaction with dislocations,” Metalozn. Term. Obrob. Met., No. 4, 55–57 (1999).

  24. M. M. Novikov, I. M. Spiridonova, and N. Yu. Filonenko, “Specific features of boride phases in boron-containing carbon steels,” Visn. Kyiv. Nats. Univ., No. 3, 525–531 (2007).

  25. N. Yu. Filonenko, “Effect of boron on the decay of austenite,” Visn. Dnipr. Nats. Univ., Issue 11, 90–94 (2004).

  26. H. Ohtani, M. Hasebe, and T. Nishizawa, “Calculation of Fe–C–B ternary phase diagram,” Trans. ISIJ, 28, 1043–1050 (1988).

    Article  Google Scholar 

  27. N. Yu. Filonenko, “Investigation of the thermodynamic functions of boron-containing phases in the Fе–B–C system,” Fiz. Khim. Tverd. Tila, 12, No. 2, 370–374 (2011).

    Google Scholar 

  28. O. Yu. Bereza, N. Yu. Filonenko, and O. S. Baskevych, “Study of the influence of binding energy on the formation of boron-containing phases in alloys of the Fе–B–C system,” Fiz. Khim. Tverd. Tila, 13, 968–973 (2012).

    Google Scholar 

  29. N. Yu. Filonenko, I. M. Spiridonova, and S. B. Pilyaeva, A Method for Boron Cementation of Steel Products [in Ukrainian], Patent No. a 20809802, S23S, 8/06, Publ. on 11.01.2012, Bull. No. 24.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Filonenko.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 51, No. 2, pp. 28–35, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filonenko, N.Y., Bereza, O.Y. & Pilyaeva, S.B. Effect of Plastic Prestraining of 25 Steel on the Diffusion Saturation of its Surface with Boron and Carbon. Mater Sci 51, 172–179 (2015). https://doi.org/10.1007/s11003-015-9825-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-015-9825-9

Keywords

Navigation