Skip to main content
Log in

Modeling of Temperature Conditions for a Braking System with Regard for the Heat Sensitivity of Materials

  • Published:
Materials Science Aims and scope

We obtain a numerical-analytic solution of the thermal problem of friction for two semibounded bodies with regard for the heat sensitivity of materials and changes in the relative sliding velocity with time (braking with constant deceleration). The linearization of the corresponding boundary-value problem of heat conduction is performed by using the Kirchhoff substitution and the method of linearizing parameters. We study the changes in the temperatures of the working surfaces of the pad and the disk in the process of braking for two frictional couples with and without taking into account the temperature dependences of their thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. G. P. Voller, M. Tirovic, R. Morris, and P. Gibbens, “Analysis of automotive disc brake cooling characteristics,” Proc. Inst. Mech. Eng., P. D: J. Automobile Eng., 217, No. 8, 657–666 (2003).

    Article  Google Scholar 

  2. A. Adamowicz and P. Grzes, “Influence of convective cooling on a disc brake temperature distribution during repetitive braking,” Appl. Ther. Eng., 31, No. 14–15, 2177–2185 (2011).

    Article  Google Scholar 

  3. O. V. Pereverzeva and V. A. Balakin, “The choice of thermal schemes and boundary conditions in finding nonstationary temperature fields in high-speed and heavily loaded friction units,” Tren. Iznos, 14, No. 3, 487–497 (1993).

    Google Scholar 

  4. B. É. Gurskii and A. V. Chichinadze, “Heat problem of friction and its development. Part I. Blok model and its improvement,” Tren. Iznos, 28, No. 3, 311–324 (2007).

    Google Scholar 

  5. O. O. Evtushenko and Yu. O. Pyr’ev, “Solution of the system of equations of the thermal dynamics of friction in the course of braking,” Dopov. Nats. Akad. Nauk Ukr., No. 10, 71–77 (1997).

  6. Z. Olesiak, Yu. Pyryev, and A. Yevtushenko, “Determination of temperature and wear during braking,” Wear, 210, No. 1–2, 120–126 (1997).

    Article  Google Scholar 

  7. A. A. Yevtushenko, E. G. Ivanyk, and O. O. Yevtushenko, “Exact formulae for determination of mean temperature and wear during braking,” Heat Mass. Trans., 35, No. 2, 163–169 (1999).

    Article  Google Scholar 

  8. A. L. Nosko, N. S. Belyakov, and A. P. Nosko, “Application of generalized boundary condition for the solution of thermal problems of friction,” Tren. Iznos, 30, No. 6, 615–625 (2009).

    Google Scholar 

  9. A. A. Yevtushenko, M. Kuciej, and O. O. Yevtushenko, “Influence of the pressure fluctuations on the temperature in pad/disc tribosystem,” Int. Comm. Heat Mass. Trans., 37, No. 8, 978–983 (2010).

    Article  Google Scholar 

  10. Yu. Pyryev and A. Yevtushenko, “The influence of the brakes friction elements thickness on the contact temperature and wear,” Heat Mass. Trans., 36, No. 4, 319–323 (2000).

    Article  Google Scholar 

  11. O. O. Evtushenko and Yu. O. Pyr’ev, “Solution of the equations of the thermal dynamics of friction for a three-layer braking tribosystem,” Dopov. Nats. Akad. Nauk Ukr., No. 4, 51–56 (2000).

  12. O. O. Evtushenko and Yu. O. Pyr’ev, “Temperature and wear of the friction surfaces of a cermet patch and metal disk in the process of braking,” Fiz.-Khim. Mekh. Mater., 36, No. 2, 55–59 (2000); English translation: Mater. Sci., 36, No. 2, 218–223 (2000.)

  13. A. V. Chichinadze, R. M. Matveevskii, and É. D. Braun, Materials in the Triboengineering of Nonstationary Processes [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  14. L. A. Kozdoba, Methods for the Solution of Nonlinear Heat-Conduction Problems [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  15. Ya. I. Burak and R. M. Kushnir (editors), Modeling and Optimization in the Thermomechanics of Conducting Inhomogeneous Bodies [in Ukrainian], Vol. 3: R. M. Kushnir and V. S. Popovych, Thermoelasticity of Heat-Sensitive Bodies, Spolom, Lviv (2009).

    Google Scholar 

  16. O. Evtushenko, M. Kuciej, and E. Och, “Effect of the heat sensitivity of materials on temperature in the course of friction,” Fiz.-Khim. Mekh. Mater., 50, No. 1, 117–122 (2014).

    Google Scholar 

  17. M. Kuciej, Analytical Models of Nonstationary Frictional Heating, Oficyna Wydawnicza Politechniki Białostockiej, Białystok (2012).

    Google Scholar 

  18. A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).

    Google Scholar 

  19. R. B. Gundlach, “The effects of alloying elements on the elevated temperature properties of gray irons,” Trans. American Foundrymen’s Soc., 91, 389–422 (1983).

    Google Scholar 

  20. R. A. Overfelt, “Thermophysical properties of 319 aluminum, compacted graphite iron, and inconel 713,” Trans. American Foundrymen’s Soc., 109, 1–9 (2001).

    Google Scholar 

  21. S. W. Kim, K. Park, S. H. Lee, et al., “Thermophysical properties of automotive metallic brake disk materials,” Int. J. Thermophys., 29, No. 6, 2179–2188 (2008).

    Article  Google Scholar 

  22. A. V. Chichinadze, É. D. Braun, A. G. Ginzburg, and Z. V. Ignat’eva, Numerical Analysis, Testing, and Selection of Friction Couples [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  23. D. V. Hrylits’kyi, Thermoelastic Contact Problems in Tribology [in Ukrainian], Inst. Zmistu Metod. Navch. Minist. Osvity Ukrainy, Kyiv (1996).

    Google Scholar 

  24. G. R. Kirchhoff, Vorlesungen über die Theorie der Wärme, Teubner, Leipzig (1894).

    Google Scholar 

  25. M. Abramowitz and I. A. Stegun (editors), Handbook of Mathematical Functions, Dover, New York (1970).

    Google Scholar 

  26. G. A. G. Fazekas, “Temperature gradient and heat stresses in brakes drums,” Trans. SAE, 61, No. 1, 279–284 (1953).

    Google Scholar 

  27. J. H. Mathews and K. D. Fink, Numerical Methods Using МАTLAB, 3rd Edition, Prentice Hall, Princeton, NJ (1999).

    Google Scholar 

  28. O. Evtushenko, M. Kuciej, and Ol. Evtushenko, “Modeling of frictional heating in the process of braking,” Fiz.-Khim. Mekh. Mater., 48, No. 5, 27–33 (2012); English translation: Mater. Sci., 48, No. 5, 582–590 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Evtushenko.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 50, No. 3, pp. 77–83, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evtushenko, O., Kuciej, M. & Och, E. Modeling of Temperature Conditions for a Braking System with Regard for the Heat Sensitivity of Materials. Mater Sci 50, 397–405 (2014). https://doi.org/10.1007/s11003-014-9732-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-014-9732-5

Keywords

Navigation