Skip to main content

Advertisement

Log in

Influence of the Stress-Strain State on the Distribution of Hydrogen Concentration in the Process Zone

  • Published:
Materials Science Aims and scope

We propose a theoretical-experimental approach to the determination of the concentration of hydrogen in the process zone. The plots of the dependences of the concentration of hydrogen on the mechanical characteristics of the material and external load are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Sofronis and R. M. McMeeking, “Numerical analysis of hydrogen transport near a blunting crack tip” J. Mech. Phys. Solids, 37, 317–350 (1989).

    Article  Google Scholar 

  2. A. H. M. Krom, R. W. J. Koers, and A. Bakkerr, “Hydrogen transport near a blunting crack tip,” J. Mech. Phys. Solids, 47, No. 4, 971–992 (1999).

    Article  Google Scholar 

  3. H. Kanayama, T. Shingoh, S. Ndong-Mefane, et al., “Numerical analysis of hydrogen diffusion problems using the finite element method,” J. Theor. Appl. Mech. Jap., 56, 389–400 (2008).

    Google Scholar 

  4. R. Miresmaeili, M. Ogino, R. Shioya, et al., “Finite element analysis of the stress and deformation fields around the blunting crack tip,” Mem. Fac. Eng., Kyushu Univ., 68, No. 4, 151–161 (2008).

    Google Scholar 

  5. L. Liu, R. Miresmaeili, M. Ogino, et al., “Finite element implementation of an elastoplastic constitutive equation in the presence of hydrogen,” J. Comput. Sci. Technol., 5, No. 1, 62–76 (2011).

    Article  Google Scholar 

  6. A. Taha and P. Sofronis, “A micromechanics approach to the study of hydrogen transport and embrittlement,” Eng. Fract. Mech., 68, 803–837 (2001).

    Article  Google Scholar 

  7. H. Kotake, R. Matsumoto, S. Taketomi, et al., “Transient hydrogen diffusion analyses coupled with crack-tip plasticity under cyclic loading,” Int. J. Pres. Ves. Pip., 85, 540–549 (2008).

    Article  Google Scholar 

  8. J. Toribio, A. Valiente, R. Cortes, et al., “Modeling hydrogen embrittlement in 316L austenitic stainless steel for the first wall of the Next European Torus,” Fusion Eng. Des., 29, 442–147 (1995).

    Article  Google Scholar 

  9. J. Toribio, D. Vergara, M. Lorenzo, and V. Kharin, “Two-dimensional numerical modeling of hydrogen diffusion assisted by stress and strain,” WIT Trans. Eng. Sci., 65, 131–140 (2009).

    Article  Google Scholar 

  10. J. Toribio, V. Kharin, D. Vergara, and M. Lorenzo, “Optimization of the simulation of stress-assisted hydrogen diffusion for the studies of hydrogen embrittlement of notched bars,” Fiz.-Khim. Mekh. Mater., 46, No. 6, 91–106 (2010); English translation: Mater. Sci., 46, No. 6, 819–833 (2010).

    Article  Google Scholar 

  11. V. V. Panasyuk, Mechanics of Quasibrittle Fracture of Materials [in Russian], Nauka, Kiev (1991).

    Google Scholar 

  12. O. E. Andreikiv and O. V. Hembara, Fracture Mechanics and Durability of Metallic Materials in Hydrogen-Containing Environments [in Ukrainian], Nauka, Kyiv (2008).

    Google Scholar 

  13. T. Yokobori, T. Nemoto, K. Saton, and T. Yamada, “Numerical analysis of hydrogen diffusion and concentration in solid with emission around the crack tip,” Eng. Fract. Mech., 55, No. 1, 47–60 (1996).

    Article  Google Scholar 

  14. T. Yokobori, Ya. Chinda, T. Nemoto, et al., “The characteristics of hydrogen diffusion and concentration around a crack tip concerned with hydrogen embrittlement,” Corr. Sci., 44, 407–424 (2002).

    Article  Google Scholar 

  15. M. Wang, E. Akiyama, and K. Tsuzaki, “Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation,” Corr. Sci., 48, 2189–2202 (2006).

    Article  Google Scholar 

  16. M. Stashchuk and M. Dorosh, “Evaluation of hydrogen stress in metal and redistribution of hydrogen around crack-like defects,” Int. J. Hydrogen Energy, 37, 14687–14699 (2012).

    Article  Google Scholar 

  17. R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, John Wiley, New York (2002).

    Google Scholar 

  18. A. H. M. Krom, R. W. J. Koers, and A. Bakkerr, “Hydrogen transport near a blunting crack tip,” J. Mech. Phys. Solids, 47, 971–992 (1999).

    Article  Google Scholar 

  19. V. V. Panasyuk, Ya. L. Ivanyts’kyi, and O. P. Maksymenko, “Analysis of the elastoplastic deformation of the material in the process zone,” Fiz.-Khim. Mekh. Mater., 40, No. 5, 67–73 (2004); English translation: Mater. Sci., 40, No. 5, 648–655 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to О. V. Hembara.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 50, No. 3, pp. 7–14, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panasyuk, V.V., Ivanyts’kyi, Y.L., Hembara, О.V. et al. Influence of the Stress-Strain State on the Distribution of Hydrogen Concentration in the Process Zone. Mater Sci 50, 315–323 (2014). https://doi.org/10.1007/s11003-014-9723-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-014-9723-6

Keywords

Navigation