Skip to main content
Log in

Characteristic Features of the Sorption–Desorption of Hydrogen by Mg–M–Ni (M = Al, Mn, Ti) Ternary Alloys

  • Published:
Materials Science Aims and scope

By the method of high-energy milling in a ball mill, we obtain new alloys of Mg–M−Ni (M = Al, Mn, Ti) ternary systems. The properties of hydrogen sorption of the Mg3AlNi2 compound (Ti2Ni-type structure) are investigated and compared with the properties of Mg3MNi2 (M = Mn, Ti) isostructural compounds. The sorption–desorption of hydrogen by Mg88M4Ni8 (M = Al, Mn, Ti) alloys is studied. The catalytic influence of Mg3MNi2 ternary phases on the hydrogenation of magnesium is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review,” Int. J. Hydrogen Energy, 32, 1121–1140 (2007).

    Article  CAS  Google Scholar 

  2. R. A. Varin, T. Czujko, and Z. S. Wronski, Nanomaterials for Solid State Hydrogen Storage, Springer, New York (2009).

    Book  Google Scholar 

  3. A. Zaluska, L. Zaluski, and J. O. Ström-Olsen, “Nanocrystalline magnesium for hydrogen storage,” J. Alloys Comp., 288, 217–225 (1999).

    Article  CAS  Google Scholar 

  4. І. Yu. Zavalii, R. V. Denys, and V. V. Berezovets,’ “Mechanochemical methods for the synthesis of new magnesium-based composite materials for hydrogen accumulation,” Fiz.-Khim. Mekh. Mater., 45, No. 2, 93–101 (2009); English translation: Mater. Sci., 45, No. 2, 248–257 (2009).

  5. R. V. Denys, V. V. Berezovets,’ and І. Yu. Zavalii, “Hydrogen-sorbing materials based on magnesium,” in: V. D. Pokhodenko, V. V. Skorokhod, and Yu. M. Solonin (editors), Fundamental Problems of Hydrogen Power Engineering [in Ukrainian], KIM, Kyiv (2010), pp. 245–265.

  6. G. Liang, J. Huot, S. Boily, et al., “Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–TM (TM = Ti, V, Mn, Fe and Ni) systems,” J. Alloys Comp., 292, 247–252 (1999).

    Article  CAS  Google Scholar 

  7. S. Bouaricha, J. P. Dodelet, D. Guay, et. al., “Hydriding behavior of Mg–Al and leached Mg–Al compounds prepared by high energy ball-milling,” J. Alloys Comp., 297, 282–293 (2002).

    Article  Google Scholar 

  8. A. Andreasen, M. B. Sorensen, R. Burkarl, et al., “Interaction of hydrogen with an Mg–Al alloy,” J. Alloys Comp., 404406, 323–326 (2005).

    Article  Google Scholar 

  9. H. Blomqvist, Magnesium Ions Stabilizing Solid-State Transition Metal Hydrides, Doctoral Dissertation, Institutionen for Fysikalisk kemi, Organisk kemi och Strukturkemi Stockholms Universitet, Stockholm (2003).

    Google Scholar 

  10. J. J. Didisheim, P. Zolliker, K. Yvon, et al., “Dimagnesium iron (II) hydride, Mg2FeH6, containing octahedral FeH6 4- anions,” Inorg. Chem., 23, 1953–1957 (1984).

    Article  CAS  Google Scholar 

  11. J. Huot, H. Hayakawa, and E. Akiba, “Preparation of the hydrides Mg2FeH6 and Mg2CoH5 by mechanical alloying followed by sintering,” J. Alloys Comp., 248, 164–167 (1997).

    Article  CAS  Google Scholar 

  12. M. Dornheim, S. Doppiu, G. Barkhordarian, et al., “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater., 56, 5841–5846 (2007).

    Article  Google Scholar 

  13. Y. Zhang, H. Yang, H. Yuan, et al., “Dehydriding properties of ternary Mg2Ni1–x Zr x hydrides synthesized by ball milling and annealing,” J. Alloys Comp., 269, 278–283 (1998).

    Article  CAS  Google Scholar 

  14. Y. Takahashi, H. Yukawa, and M. Morinaga, “Alloying effects on the electronic structure of Mg2Ni intermetallic hydride,” J. Alloys Comp., 242, 98–107 (1996).

    Article  CAS  Google Scholar 

  15. G. Lu, L. Chen, L. Wang, et al., “Study on the phase composition of Mg2–x M x Ni (M = Al, Ti) alloy,” J. Alloys Comp., 321, L1–L4 (2001).

    Article  CAS  Google Scholar 

  16. F. C. Gennari, G. Urretavizcaya, J. J. Andrade Gamboa, et al., “New Mg-based alloy obtained by mechanical alloying in the Mg–Ni–Ge system,” J. Alloys Comp., 354, 187–192 (2003).

    Article  CAS  Google Scholar 

  17. R. V. Denys, I. Yu. Zavaliy, V. Paul-Boncour, et al., “New Mg–Mn–Ni alloys as efficient hydrogen storage materials,” Intermetallics, 18, 1579–1585 (2010).

    Article  CAS  Google Scholar 

  18. R. V. Denys, I. Yu. Zavaliy, V. V. Berezovets, et al., “Phase equilibria in the Mg–Ti–Ni system at 500°C and hydrogenation properties of selected alloys,” Intermetallics, 32, 167–175 (2013).

    Article  CAS  Google Scholar 

  19. R. V. Denys, A. R. Riabov, V. V. Berezovets, et al., “Crystal structure of the novel Mg3MnNi2D3−x interstitial deuteride,” Intermetallics, 19, 1563–1566 (2011).

    Article  CAS  Google Scholar 

  20. G. Liang, S. Boily, J. Huot, et al., “Mechanical alloying and hydrogen absorption properties of the Mg–Ni system,” J. Alloys Comp., 267, 302–306 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Zavalii.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 49, No. 2, pp. 26–34, March–April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezovets’, V.V., Denys, R.V., Zavalii, I.Y. et al. Characteristic Features of the Sorption–Desorption of Hydrogen by Mg–M–Ni (M = Al, Mn, Ti) Ternary Alloys. Mater Sci 49, 159–169 (2013). https://doi.org/10.1007/s11003-013-9595-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-013-9595-1

Keywords

Navigation