Materials Science

, Volume 48, Issue 1, pp 1–11 | Cite as

Hydrogen as a technological medium for the formation of nanostructures in Sm–Co ferromagnetic alloys

Article

We present a survey of the results of application of various modes of hydrogen treatment of ferromagnetic materials based on the SmCo5 compound aimed at the formation of anisotropic nanostructures, namely, of mechanochemical milling, thermal treatment [hydrogenation, disproportionation, desorption, and recombination (HDDR)] of alloys in hydrogen, and the combination of milling in hydrogen with HDDR. It is shown that HDDR enables us to get alloys containing the SmCo5, Sm2Co17, and Sm2Co7 phases with grain sizes within the range 60–100 nm and the single-phase magnetic behavior. The anisotropic powders with microstructural grain sizes within the range 40–75 nm and coercive forces higher than 40 kOe were obtained after milling in hydrogen combined with HDDR. A combined method of processing including the procedure of milling of the alloys in hydrogen and HDDR treatment is proposed for the formation of the microstructure of ferromagnetic alloys with high dispersion and high magnetic properties. It is experimentally demonstrated that the formation of anisotropy in ferromagnetic alloys by disproportionation and recombination is possible if the residual amounts of the main phase of the alloy remain in the metal after disproportionation.

Keywords

samarium-cobalt alloys nanostructure hydrogen-based technologies anisotropy phase transformations disproportionation-recombination 

References

  1. 1.
    K. J. Strnat and R. M. W. Strnat, “Rare earth-cobalt permanent magnets,” J. Magn. Magn. Mater., 100, 38–56 (1991).CrossRefGoogle Scholar
  2. 2.
    R. Coehoorn, D. B. de Mooij, and C. de Waard, “Melt-spun permanent magnet materials containing Fe3B as the main phase,” J. Magn. Magn. Mater., 80, 101–104 (1989).CrossRefGoogle Scholar
  3. 3.
    E. F. Kneller and R. Hawig, “The exchange-spring magnet: A new material principle for permanent magnets,” IEEE Trans. Magn., 27, 3588–3600 (1991).CrossRefGoogle Scholar
  4. 4.
    J. Ping Liu, E. Fullerton, O. Gutfleisch, and D. J. Sellmyer (editors), Nanoscale Magnetic Materials and Applications, Springer, New York (2009).Google Scholar
  5. 5.
    R. Manaf, R. A. Buckley, and H. A. Davis, “New nanocrystalline high-remanence Nd–Fe–B alloys by rapid solidification,” J. Magn. Magn. Mater., 128, 302–306 (1993).CrossRefGoogle Scholar
  6. 6.
    L. Withanawasam, G. C. Hadjipanayis, and R. F. Krause, “Enhanced remanence in isotropic Fe-rich melt-spun Nd–Fe–B ribbons,” J. Appl. Phys., 75, 6646–6648 (1994).CrossRefGoogle Scholar
  7. 7.
    J. Ding, P. G. McCormick, and R. Street, “Remanence enhancement in mechanically alloyed isotropic Sm7Fe93-nitride,” J. Magn. Magn. Mater., 124 1–4 (1993).CrossRefGoogle Scholar
  8. 8.
    O. Donnell, C. Kuhrt, and J. M. D. Coey, “Influence of nitrogen content on coercivity in remanence-enhanced mechanically alloyed Sm– Fe–N,” J. Appl. Phys., 76, 7068–7070 (1994).CrossRefGoogle Scholar
  9. 9.
    D. Lee, S. Bauser, A. Higgins, et al., “Bulk anisotropic composite rare earth magnets,” J. Appl. Phys., 99, 08B516-1–108B516-3 (2006).Google Scholar
  10. 10.
    G. C. Hadjipanayis and A. M. Gabay, “Overview of the high-temperature 2:17 magnets,” in: HPMA’04, 18th Internat. Workshop on High Performance Magnets and Their Applications, Annecy (France) August 29–September 2 (2004) (on CD).Google Scholar
  11. 11.
    G. C. Hadjipanayis, J. Liu, A. M. Gabay, and M. Marinesku, “Current status of rare-earth permanent magnet research in USA,” in: Proc. of the 19th Internat. Workshop on High Performance Magnets and Their Applications (Beijing China) 30.08–01.09.2006) (2006), pp. 12–22.Google Scholar
  12. 12.
    A. M. Gabay, W. F., Li, and G. C. Hadjipanayis, “Effect of hot deformation on texture and magnetic properties of Sm–Co and Pr– Co alloy,” J. Magn. Magn. Mater., 323, 2470–2473 (2011).CrossRefGoogle Scholar
  13. 13.
    N. Cannesan and I. R. Harris, “Aspects of NdFeB HDDR powders: fundamentals and processing,” in: G. C. Hadjipanayis (editor), Bonded Magnets, NATO Science Series: II. Mathematics, Physics, and Chemistry, Kluwer, Dordrecht (2002), pp. 13–36.Google Scholar
  14. 14.
    Y. Honkura, “HDDR magnets and their potential use for automotive applications,” in: Proc. 18th Internat. Workshop on High Performance Magnets and Their Applications, Annecy (France), 2004, pp. 559–565 (on CD).Google Scholar
  15. 15.
    O. Gutfleisch, M. Matzinger, J. Fidler, and I. R. Harris, “Characterization of solid-HDDR processed Nd16Fe76B8 alloys by means of electron microscopy,” J. Magn. Magn. Mater., 147, 320–330 (1995).CrossRefGoogle Scholar
  16. 16.
    I. I. Bulyk, Yu. B. Basaraba, A. M. Trostyanchyn, and V. M. Davydov, “Disproportionation in hydrogen and recombination of the Laves phases of zirconium with chromium,” Mater. Sci., 41, No. 3, 395–405 (2005).CrossRefGoogle Scholar
  17. 17.
    M. Kubis, A. Handstein, B. Gebel, et al., “Highly coercive SmCo5 magnets prepared by a modified hydrogenation-disproportionation-desorption-recombination process,” J. Appl. Phys., 85, 5666–5668 (1999).CrossRefGoogle Scholar
  18. 18.
    O. Gutfleisch, M. Kubis, A. Handstein et al., “Hydrogenation disproportionation desorption recombination in Sm–Co alloys by means of reactive milling,” Appl. Phys. Lett., 73, 3001–3003 (1998).CrossRefGoogle Scholar
  19. 19.
    A. Handstein, M. Kubis, O. Gutfleisch et al., “HDDR of Sm–Co alloys using high hydrogen pressures,” J. Magn. Magn. Mater., 192, 73–76 (1999).CrossRefGoogle Scholar
  20. 20.
    I. I. Bulyk, V. V. Panasyuk, and A. M. Trostianchyn, “Features of the HDDR process in alloys based on the SmCo5 compound,” J. Alloys Comp., 379, 154–160 (2004).CrossRefGoogle Scholar
  21. 21.
    I. I. Bulyk and A. M. Trostyanchyn, “Structure of an alloy based on SmCo5 after disproportionation-recombination,” Mater. Sci., 42, No. 5, 644–648 (2006).CrossRefGoogle Scholar
  22. 22.
    I. I. Bulyk and A. M. Trostyanchyn, “Hydrogenation-disproportionation in samarium-cobalt ferromagnetic alloys based on Sm2(Co,Fe,Cu, Zr)17,” Mater. Sci., 39, No. 4, 395–405 (2003).CrossRefGoogle Scholar
  23. 23.
    S. Tao, J. Tian, X. Lu, et al., “Anisotropic bonded NdFeB magnets with radial oriented magnetization by 2-step warm compaction process,” J. Alloys Comp., 477, 510–514 (2009).CrossRefGoogle Scholar
  24. 24.
    I. I. Bulyk, A. M. Trostianchyn, V. G. Synyushko, et al., “Phase transformations in LaNi5−xCox –H2 system,” Intermetallics, 13, 1220–1224 (2005).CrossRefGoogle Scholar
  25. 25.
    I. I. Bulyk, V. V. Panasyuk, and A. M. Trostyanchyn, Procedure of Formation of Anisotropic Fine-Grained Structures of the Powders of Alloys of the Sm–Co System by Their Hydrogen-Vacuum Thermal Treatment [in Ukrainian], Patent 96,810 (Ukraine). H 01 F 1/053; H 01 F 1/055; B 82 B 3/00, Publ. on 12.12.2011, Bull. No. 23.Google Scholar
  26. 26.
    I. I. Bulyk, V. V. Panasyuk, and A. M. Trostyanchyn, Procedure of Formation of Anisotropic Fine-Grained Structures of the Powders of Alloys of the Sm–Co System by Their Milling in Hydrogen [in Ukrainian], Patent 96,811 (Ukraine). H 01 F 1/053; H 01 F 1/055; B 82 B 3/00, Publ. on 12.12.2011, Bull. No. 23.Google Scholar
  27. 27.
    I. I. Bulyk, Yu. B. Basaraba, and V. I. Markovych, “Production of functional nanocrystalline materials in hydrogen,” Mater. Sci., 39, No. 6, 841–848 (2003).CrossRefGoogle Scholar
  28. 28.
    I. I. Bulyk, R. V. Denys, V. V. Panasyuk, Yu. H. Putilov, and A. M. Trostyanchyn, “HDDR process and the hydrogen-absorption properties of the didymium-aluminum-iron-boron (Dd12.3Al1.2Fe79.4B6) alloy,” Mater. Sci., 37, No. 4, 544–550 (2001).CrossRefGoogle Scholar
  29. 29.
  30. 30.
  31. 31.
    L. G. Akselrud, Yu. N. Grin, and P. Yu. Zavalij, “CSD-universal program package for single crystal or powder structure data treatment,” in: Collected Abstr. of the 12th Europ. Crystallographic Meeting (Moscow, 20–29.08.1989) [in Russian], Vol. 3, Nauka, Moscow (1989), p. 155.Google Scholar
  32. 32.
    V. K. Pecharskii, L. G. Akselrud, and P. Yu. Zavalij, “On the method of taking into account the influence of predominant orientation (texture) in powder specimens for the investigation of the atomic structures of substances,” Kristallografiya, No. 4, 874–877 (1987).Google Scholar
  33. 33.
  34. 34.
    I. I. Bulyk, A. M. Trostyanchyn, and V. I. Markovych, “Hydrogen-induced phase transformations in alloys based on SmCo5 under pressures of up to 650 kPa,” Mater. Sci., 43, No. 1, 102–108 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations