Application of Fractal Geometry to the Problems of Prediction of the Residual Service Life of Aircraft Structures

The deformation pattern of the surface of clad aluminum alloys is regarded as an indicator of the degree of accumulated fatigue damage. We demonstrate the possibility of application of the methods of fractal geometry to the analysis of the optical images of deformation patterns. We study a series of procedures used for the calculation of fractal dimensions and propose their complex application to the problems of prediction of the residual service life of aircraft structures according to the state of the deformation pattern.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    A. I. Gudkov and P. S. Leshakov, External Loads and Strength of Flying Vehicles [in Russian], Mashinostroenie, Moscow (1968).

    Google Scholar 

  2. 2.

    S. R. Ihnatovych, M. V. Karuskevych, and O. M. Karuskevych, A Method for the Determination of the Residual Service Life of Structural Elements According to the State of Deformation Pattern on the Surface of the Cladding Layer [in Ukrainian], Declarative Patent of Ukraine for a Useful Model No. 3470, Publ. 15.11.2004, Bull. No. 11.

  3. 3.

    M. V. Karuskevich and O. M. Karuskevich, “Monitoring of the degradation of strength of aircraft structures with the help of monocrystalline indicators,” Probl. Sist. Podkhod. Ékon., No. 4, 96–101 (2000).

  4. 4.

    M. V. Karuskevych, E. Yu. Korchuk, T. P. Maslak, et al., “Structural damage and fracture of the reference specimens of fatigue damage,” Aviats.-Kosm. Tekhn. Tekhnol., No. 9 (56), 110–114 (2008).

  5. 5.

    M. V. Karuskevich, S. R. Ignatovich, and O. M. Karuskevich, “Diagnostics of fatigue for clad aluminum alloys,” Vestn. NTUU “KPI,” Mashinostroen., No. 43, 53–55 (2002).

  6. 6.

    O. M. Karuskevich, S. R. Ignatovich, and M. V. Karuskevich, “Evolution of the degree of damage to D16AT alloy near a stress concentrator in the stage preceding the initiation of a fatigue crack,” Aviats.-Kosm. Tekhn. Tekhnol., No. 4 (12), 29–32 (2004).

  7. 7.

    V. I. Bol’shakov, V. N. Volchuk, and Yu. I. Dubrov, Fractals in Materials Science [in Russian], PGASA, Dnepropetrovsk (2005).

  8. 8.

    M. V. Karuskevich, E. Yu. Korchuk, T. P. Maslak, et al., “Estimation of the accumulated fatigue damage according to the saturation and fractal dimension of the deformation pattern,” Probl. Prochn., No. 6, 128–135 (2008).

    Google Scholar 

  9. 9.

    J. Feder, Fractals, Plenum, New York (1988).

    Google Scholar 

  10. 10.

    V. I. Bol’shakov, Yu. I. Dubrov, F. V. Kryulin, and V. M. Volchuk, A Method for the Determination of the Fractal Dimension of Images [in Ukrainian], Patent of Ukraine No. 51439А, Publ. 02.02.2002.

  11. 11.

    I. M. Zhuravel’ and R. A. Vorobel’, “Evaluation of fractal dimensions by using surface integrals,” Vidbir Obrob. Inform., No. 26, 95– 98 (2007).

    Google Scholar 

  12. 12.

    O. M. Karuskevich, “Influence of level of stresses on the development of the deformation pattern,” Vestn. Dvigatelestroen., No. 2, 79–82 (2005).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to I. M. Zhuravel’.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol.47, No.5, pp.48–52, September–October, 2011.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karuskevych, M.V., Zhuravel’, I.M. & Maslak, T.P. Application of Fractal Geometry to the Problems of Prediction of the Residual Service Life of Aircraft Structures. Mater Sci 47, 621–626 (2012).

Download citation


  • aircraft structures
  • clad aluminum alloy
  • fatigue damage
  • residual service life
  • deformation pattern
  • fractal dimension