Skip to main content
Log in

Using a quantum-chemical approach for the investigation of corrosion on surfaces of metals and alloys

  • Published:
Materials Science Aims and scope

We analyze results of using quantum chemistry methods for simulating and calculating the interaction of surfaces of metals and alloys with a corrosive medium in the cluster approximation. Models of corrosion dissolution of brass and intermetallics of an aluminum alloy are constructed, and energy characteristics of the interaction of components of a chloride-containing medium with their surfaces are determined. We determine energy barriers of ionization of clusters of the components of brass and the CuAl2 intermetallic in a medium, which enables us to propose the mechanism of their fracture. A model of the contact interaction of dissimilar metals Al–Fe, Al–Cr, Cu–Al, and Cu–Fe in the presence of particles of the corrosive medium is considered, the values of the adhesion energy of the corresponding clusters of dissimilar metals is computed, and its dependence on the composition of the medium is found. The prospects and efficiency of the quantum chemistry methods for the study of corrosion fracture of metals and alloys are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. K. Das, K. Suzuki, Y. Takeda, et al., “Quantum chemical molecular dynamics study of stress corrosion cracking behavior for fcc Fe and Fe–Cr surfaces,” Corr. Sci., 50, 1701–1706 (2008).

    Article  CAS  Google Scholar 

  2. G. Gece, “The use of quantum chemical methods in corrosion inhibitor studies,” Corr. Sci., 50, 2981–2992 (2008).

    Article  CAS  Google Scholar 

  3. M. Lashgari and A. M. Malek, “Fundamental studies of aluminum corrosion in acidic and basic environments: theoretical predictions and experimental observations,” Electrochim. Acta, 55, 5253–5257 (2010).

    Article  CAS  Google Scholar 

  4. V. Pokhmurskii, S. Korniy, and V. Kopylets, “The theoretical study of interaction of water chloride containing environment components with CuAl2 intermetallic surface,” J. Cluster Sci., 21, No. 1, 35–43 (2010).

    Article  CAS  Google Scholar 

  5. R. R. Nazmutdinov, “Quantum-chemical approach to the description of charge transfer processes at the metal–solution interface: yesterday, today, and tomorrow,” Élektrokhimiya, 38, No. 2, 131–143 (2002).

    Google Scholar 

  6. C. Stampfl, M. V. Ganduglia-Pirovano, K. Reuter, and M. Scheffler, “Catalysis and corrosion: the theoretical surface-science context,” Surf. Sci., 500, 368–394 (2002).

    Article  CAS  Google Scholar 

  7. R. Akid and D. J. Mills, “A comparison between conventional macroscopic and novel microscopic scanning electrochemical methods to evaluate galvanic corrosion,” Corr. Sci., No. 6, 1203–1216 (2003).

    Google Scholar 

  8. V. A. Gubanov, V. P. Zhukov, and A. O. Litinskii, Semiempirical Molecular Orbital Methods in Quantum Chemistry [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  9. R. M. Dreizler and E. K. Gross, Density Functional Theory, Springer, Berlin (1990).

    Google Scholar 

  10. M. J. S. Dewar and W. Thiel, “Ground states of molecules. 38. The MNDO method. Applications and parameters,” J. Am. Chem. Soc., 99, No. 15, 4899–4907 (1977).

    Article  CAS  Google Scholar 

  11. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., 140, A1133–A1138 (1965).

    Article  Google Scholar 

  12. L. I. Krishtalik, Electrode Reactions. Mechanism of an Elementary Act [in Russian], Nauka, Moscow (1979).

  13. J. J. P. Stewart, “Optimization of parameters for semiempirical methods I. Method,” J. Comp. Chem., 10, 209–220 (1989).

    Article  CAS  Google Scholar 

  14. J. J. P. Stewart, “Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements,” J. Mol. Model., 13, 1173–1213 (2007).

    Article  CAS  Google Scholar 

  15. M. S. Schmidt, K. K. Baldridge, J. A. Boatz, et al., “General atomic and molecular electronic structure system,” J. Comp. Chem., 14, No. 11, 1347–1363 (1993).

    Article  CAS  Google Scholar 

  16. J. J. P. Stewart, “Mopac: a semiempirical molecular orbital program,” J. Comput.-Aided Mol. Des., 4, No. 1, 1–105 (1990).

    Article  Google Scholar 

  17. K. Hermann, L. G. M. Pettersson, M. E. Casida, et al, StoBe2008, Version 2.4; 2.2 ed. (2008).

  18. V. I. Pokhmurskii, V. I. Kopylets, and M. S. Khoma, “A theoretical study of surface phenomena in the selective dissolution of copper–zinc alloys,” Adsorp. Sci. Technol., 2, 135–138 (1999).

    Google Scholar 

  19. H. Ruuska, T. A. Pakkanen, and R. L. Rowley, “MP2 study on water adsorption on cluster models of Cu(111),” J. Phys. Chem. B., 108, 2614–2619 (2004).

    Article  CAS  Google Scholar 

  20. V. I. Pokhmursky, M. S. Khoma, and I. M. Antoshchak, “Selective dissolution of LS59-1 brass under the effect of cyclic stresses,” in: Proc. of the 6th Int. Frumkin Symp. “Fundamental Aspects of Electrochemistry” [in Russian], Moscow (1995), pp. 136–138.

  21. V. I. Pokhmurs’kyi, S. A. Kornii, and V. I. Kopylets’, “Investigation of the interaction of the components of the aqueous chloridecontaining medium with the intermetallic CuAl2: the quantum-chemical cluster approach,” Fiz. Khim, Tverd. Tila, 7, No. 2, 297–302 (2006).

    Google Scholar 

  22. V. I. Pokhmurs’kyi, S. A. Kornii, and V. I. Kopylets’, “Simulation of the corrosion dissolution of intermetallics using the quantumchemical approach,” Fiz.-Khim. Mekh. Mater., Special Issue, 1, No. 5, 26–33 (2006).

  23. R. G. Buchheit, “Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3,” J. Electrochem. Soc., 144, 2621–2628 (1997).

    Article  CAS  Google Scholar 

  24. R. R. Nazmutdinov, T. T. Zinkicheva, and M. S. Shapnik, “Quantum-chemical investigation of the interaction of water molecules with the surface of metallic electrodes,” Élektrokhimiya, No. 10, 1249–1259 (1999).

  25. A. M. Kuznetsov, A. N. Maslii, and M. S. Shapnik, “Molecular–continuum model of adsorption of a cyanide ion on the metals of the copper subgroup from aqueous solutions,” Élektrokhimiya, No. 12, 1477–1482 (2000).

  26. V. Pokhmurs’kyi, V. Kopylets’, and S. Kornii, “Molecular simulation of the contact interaction of dissimilar metals in the presence of a corrosive medium,” Fiz.-Khim. Mekh. Mater., Special Issue, 2, No. 8, 536–542 (2010).

  27. S. A. Kornii and V. I. Kopylets’, “Quantum-chemical calculation of the adhesion energy of contacting dissimilar metals in a medium,” Fiz.-Khim. Mekh. Mater., 46, No. 5, 15–22 (2010).

    Google Scholar 

  28. I. V. Bazhin, O. A. Leshcheva, and I. Ya. Nikiforov, “Electronic structure of nanosized metallic clusters,” Fiz. Tverd. Tela, 48, Issue 4, 726–731 (2006).

    Google Scholar 

  29. V. I. Pokhmurs’kyi, V. I. Kopylets’, and S. A. Kornii, “Theoretical investigation of the catalytic properties of a nickel nanocluster in a medium containing a carbon monoxide and oxygen,” Nanostrukt. Materialoznav., No. 2–6, 51–58 (2005).

  30. A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., 98 (7), 5648–5563 (1993).

    Article  CAS  Google Scholar 

  31. P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg,” J. Chem. Phys., 82, 270–284 (1985).

    Article  CAS  Google Scholar 

  32. M. V. Mamonova, R. V. Poterin, and V. V. Prudnikov, “Calculation of the surface energy of metals within the framework of the model of the generalized Heine–Abarenkov pseudopotential,” Vestn. Omsk. Univ., No. 1, 41–43 (1996).

    Google Scholar 

  33. D. M. Skorov, A. I. Dashkovskii, and V. N. Maskalets, Surface Energy of Solid Metallic Phases [in Russian], Atomizdat, Moscow (1973).

    Google Scholar 

  34. A. N. Vakilov, M. V. Mamonova, and V. V. Prudnikov, “Adhesion of metals and semiconductive metals within the framework of the dielectric formalism,” Fiz. Tverd. Tela, 39, No. 6, 964–967 (1997).

    CAS  Google Scholar 

  35. B. I. Kostetskii (editor), Surface Strength of Materials in Friction [in Russian], Tekhnika, Kiev (1976).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kornii.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 47, No. 2, pp. 21–32, March–April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokhmurs’kyi, V.I., Kornii, S.A. & Kopylets’, V.I. Using a quantum-chemical approach for the investigation of corrosion on surfaces of metals and alloys. Mater Sci 47, 137–149 (2011). https://doi.org/10.1007/s11003-011-9379-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-011-9379-4

Keywords

Navigation