Skip to main content
Log in

Quantitative evaluation of Barkhausen jumps according to the signals of magnetoacoustic emission

  • Published:
Materials Science Aims and scope

We propose an analytic model for the quantitative assessment of a volume jump of domain walls, caused by the Barkhausen effect, under the action of a magnetic field accompanied by magnetoelastic acoustic emission. Dependences for the evaluation of its amplitudes are constructed. Initial data for the calculation of displacements with the proposed model are obtained. It is shown that the method of magnetoelastic acoustic emission is sensitive to the reconstruction of the domain structure of ferromagnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Rudyak, “Barkhausen effect,” Usp. Fiz. Nauk, 111, No. 3, 429–462 (1970).

    Google Scholar 

  2. R. L. Sánchez, M. I. L. Pumarega, M. Armeite, et al., “ Barkhausen effect and acoustic emission in a metallic glass—preliminary results,” in: D. O. Thompson and D. E. Chimenti (editors), Review of Quantitative Nondestructive Evaluation, Vol. 23 (2004), pp. 1328–1335.

  3. M. Shibata and K. Ono, “Magnetomechanical acoustic emission—a new method of nondestructive stress measurement,” in: NDT International, October (1981), pp. 227–234.

  4. D. J. Buttle, C. B. Scruby, J. P. Yakubovics, and J. A. D. Briggs, “Magnetoacoustic and Barkhausen emission: their dependence on dislocations in iron,” Phil. Mag., 55, No. 6, 717–734 (1987).

    Article  CAS  Google Scholar 

  5. J. Kameda and R. Ranjan, “Nondestructive evaluation of steels using acoustic and magnetic Barkhausen signals. I. Effect of carbide precipitation and hardness,” Acta Met., 35, No. 7, 1515–1526 (1987).

    Article  CAS  Google Scholar 

  6. N. A. Glukhov and V. N. Kolmogorov, “Relation of parameters of acoustic noise in reversal magnetized structural materials,” Defektoskopiya, No. 2, 26–29 (1988).

  7. K. Ono and M. Shibata, “Magnetomechanical acoustic emission of iron and steels,” Mater. Evaluation, 38, 55–61 (1980).

    CAS  Google Scholar 

  8. J. Kameda and R. Ranjan, “Nondestructive evaluation of steels using acoustic and magnetic Barkhausen signals. II. Effect of intergranular impurity segregation,” Acta Met., 35, No. 7, 1527–1531 (1987).

    Article  CAS  Google Scholar 

  9. E. S. Gorkunov, V. A. Khamitov, O. A. Bertenev, et al., “Magnetoelastic acoustic emission in heat treated structural steels,” Defektoskopiya, No. 3, 3–9 (1987).

  10. N. A. Glukhov, V. N. Kolmogorov, and B. I. Miletskii, “Investigation of acoustic noise in reversal magnetized structural materials,” Defektoskopiya, No. 9, 36–40 (1985).

  11. M. Shibata, E. Kobajashi, and K. Ono, “The detection of longitudinal rail force via magnetomechanical acoustic emission,” J. Acoust. Emiss., 4, No. 4, 93–100 (1986).

    Google Scholar 

  12. G. V. Lomaev, V. A. Komarov, and V. I. Rubtsov, “Experimental investigation of the acoustic manifestation of the Barkhausen effect in structural steels,” in: Barkhausen Effect and its Use in Engineering [in Russian], Kalinin State University, Kalinin (1981), pp. 78–84.

  13. Yu. G. Bezymyannyi, “Investigation of possibilities of the method of magnetoacoustic noise for the control of the fatigue of nickel,” in: Barkhausen Effect and its Use in Engineering [in Russian], Kalinin State University, Kalinin (1981), pp. 152–156.

  14. R. Ranjan, D. C. Jiles, O. Buck, and R. V. Thompson, “Grain size measurement using magnetic and acoustic Barkhausen noise,” J. Appl. Phys., 61, No. 8, 3199-3201 (1987).

    Article  CAS  ADS  Google Scholar 

  15. D. J. Buttle, J. P. Yakubovics, and J. A. D. Briggs, “Magnetoacoustic and Barkhausen emission from domain—wall interaction with precipitates in Incoloy 904,” Philos. Mag. A., 55, No. 6, 735–756 (1987).

    Article  CAS  ADS  Google Scholar 

  16. V. D. Boltachev, I. V. Golovshchikova, A. E. Ermakov, and Yu. N. Dragoshanskii, “Barkhausen effect and magnetoacoustic emission in FeAl, FeCo, and FeSi alloys,” Fiz. Met. Metalloved., No. 12, 59–67 (1992).

    Google Scholar 

  17. K. Aki and P. G. Richards, Quantitative Seismology, Freeman, New York (1980).

    Google Scholar 

  18. J. D. Eshelby, “The determination of the elastic field of an ellipsoid inclusion and related problems,” Proc. Roy. Soc. London, A241, 379–396 (1957).

    MathSciNet  ADS  Google Scholar 

  19. T. Kishi, “Acoustic emission source characterization and its application to microcracking,” Z. Metallk., 76, No. 7, 512–515 (1985).

    CAS  Google Scholar 

  20. M. A. Shibata, “A theoretical evaluation of acoustic emission signals. – The rise-time effect of dynamic force,” Mater. Eval., 42, No. 1, 107–120 (1984).

    Google Scholar 

  21. V. M. Rudyak, Switching Processes in Nonlinear Crystals [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  22. S. Chikazumi, Physics of Ferromagnetism, Vol. 2: Magnetic Characteristics and Engineering Application, Shokabo, Tokyo (1984).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Serhienko.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 45, No. 3, pp. 67–75, May–June, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skal’s’kyi, V.R., Serhienko, O.M., Mykhal’chuk, V.B. et al. Quantitative evaluation of Barkhausen jumps according to the signals of magnetoacoustic emission. Mater Sci 45, 399–408 (2009). https://doi.org/10.1007/s11003-009-9198-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-009-9198-z

Keywords

Navigation