Skip to main content
Log in

Mechanochemical methods for the synthesis of new magnesium-based composite materials for hydrogen accumulation

  • Published:
Materials Science Aims and scope

We present a brief overview of works on the synthesis of magnesium hydrides and alloys by traditional methods and analyze mechanical methods for synthesis of these materials. Advantages of reactive milling for the preparation of new efficient hydrogen sorbents based on magnesium are discussed. It is shown that the reaction rate of the mechanochemical synthesis of MgH2 increases four times as a result of the introduction of additives of intermetallic compounds based on Ti and Zr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Jolibois, “Hydrolysis of magnesium hydride in the presence of ammonium salts,” Compt. Rend. Hebdomad. Sean. Acad. Sci., 155, 353–355 (1912).

    CAS  Google Scholar 

  2. E. Wiberg, H. Goeltzer, and R. Bauer, “Synthesis of MgH from the elements,” Z. Naturf., B, 6, 394–395 (1951).

    Google Scholar 

  3. F. J. Ellinger, C. E. Holley, and B. B. McInteer, “The preparation and some properties of magnesium hydride,” J. Amer. Chem. Soc., 77, 2647–2648 (1955).

    Article  CAS  Google Scholar 

  4. T. N. Dymova, Z. K. Sterlyadkina, and V. G. Safronov, “Synthesis of magnesium hydride from nonactivated metal,” Zh. Neorg. Khim., 6, 763–766 (1963).

    Google Scholar 

  5. B. Vigeholm, J. Kjoller, and B. Larsen, “Magnesium for hydrogen storage,” J. Less-Common Met., 74, 341–350 (1980).

    Article  CAS  Google Scholar 

  6. K. M. Mackay, Hydrogen Compounds of the Metallic Elements, Spon, London (1965).

    Google Scholar 

  7. P. Vajeeston, P. Ravindran, B. C. Hauback, et al., “Structural stability and pressure-induced phase transition in MgH2 ,” Phys. Rev. B, 73, 224102 (2006).

    Article  ADS  Google Scholar 

  8. J. F. Fernandez and C. R. Sanchez, “Rate determining step in the absorption and desorption of hydrogen by magnesium,” J. Alloys Comp., 340, 189–198 (2002).

    Article  CAS  Google Scholar 

  9. A. Zaluska, L. Zaluski, and J. O. Strom-Olsen, “Nanocrystalline magnesium for hydrogen storage,” J. Alloys Comp., 288, 217–225 (1999).

    Article  CAS  Google Scholar 

  10. C. P. Chen, B. H. Liu, Z. P. Li, and Q. D. Wang, “Hydriding properties of La2Mg16 Ni alloy prepared by mechanical milling in benzene,” Z. Phys. Chem., 181, 259–262 (1993).

    CAS  ADS  Google Scholar 

  11. G. Liang, E. Wang, and S. Fang, “Hydrogen adsorption and desorption characteristics of mechanically milled Mg–35 wt. % FeTi1.2 powders,” J. Alloys Comp., 223, 111–114 (1995).

    Article  CAS  Google Scholar 

  12. I. G. Konstanchuk, E. Yu. Ivanov, and V. V. Boldyrev, “Interaction of alloys and intermetallics obtained by mechanochemical methods with hydrogen,” Usp. Khim., 67, No. 1, 75–84 (1998).

    CAS  Google Scholar 

  13. K. Norskov, A. Houmuller, P. Johasson, et al., “Adsorption and dissociation of H2 on Mg surfaces,” J. Less-Common Met., 46, 257–261 (1981).

    Google Scholar 

  14. A. Krozer and B. Kasemo, “Equilibrium hydrogen uptake and association kinetics for the Mg–H2 system at low pressures,” J. Phys. Condens. Matter., No. 1, 1533–1538 (1989).

    Google Scholar 

  15. F. Stillesjö, S. Olaffson, B. Hjörvasson, and E. Karlsson, “Hydride formation an Mg / Ni multilayers studied for hydrogen profiling and volumetric measurements,” Z. Phys. Chem., 181, 353–361 (1993).

    Google Scholar 

  16. B. Vigeholm, K. Jensen, B. Larsen, and A. Schreder-Pedersen, “Elements of hydride formation mechanisms in nearly spherical magnesium powder particles,” Less-Common Met., 131, 133–141 (1987).

    Article  CAS  Google Scholar 

  17. P. A. Huhn, M. Dornheim, G. Barkhordarian, et al., “Thermal stability of catalyzed nanocrystalline MgH2 for hydrogen storage,” in: Abstracts of the International Symposium on Metal–Hydrogen Systems MH2004 (September 5–10, 2004, Kraków), Kraków (2004), p. 125.

  18. J. J. Reilly and R. H. Wiswall, “Reaction of hydrogen with alloys of magnesium and copper,” Inorg. Chem., 6, 2220–2223 (1967).

    Article  CAS  Google Scholar 

  19. J. J. Reilly and R. H. Wiswall, “The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2 Ni,” Inorg. Chem., 7, 2254–2256 (1968).

    Article  CAS  Google Scholar 

  20. H. Blomqvist, Magnesium Ions Stabilizing Solid-State Transition Metal Hydrides. Doctoral Dissertation, Institutionen for Fysikalisk kemi, Oorganisk kemi och Strukturkemi, Stockholms Universitet, Stockholm (2003).

  21. J. J. Didisheim, P. Zolliker, K. Yvon, et al., “Dimagnesium iron (II) hydride, Me2 FeH6 containing octahedral FeH 4−6 anions,” Inorg. Chem., 23, 1953–1957 (1984).

    Article  CAS  Google Scholar 

  22. J. Huot, H. Hayakawa, and E. Akiba, “Preparation of the hydrides Me2 FeH6 and Mg2 CoH5 by mechanical alloying followed by sintering,” J. Alloys Comp., 248, 164–167 (1997).

    Article  CAS  Google Scholar 

  23. P. Selwam, B. Viswanathan, C. S. Swamy, and V. Srinivasan, “Magnesium and magnesium alloy hydrides,” Int. J. Hydrog. Energy, 11, 169–192 (1986).

    Article  Google Scholar 

  24. B. Darriet, M. Pezat, A. Hbika, and P. Hagenmuller, “Application of magnesium rich rare-earth alloys to hydrogen storage,” Int. J. Hydrog. Energy, 5, 173–178 (1980).

    Article  CAS  ADS  Google Scholar 

  25. A. Zaluska, L. Zaluski, and J. O. Ström-Olsen, “Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2 Ni,” J. Alloys Comp., 289, 197–206 (1999).

    Article  CAS  Google Scholar 

  26. J. Huot, G. Liang, S. Boily, et al., “Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride,” J. Alloys Comp., 293–295, 495–500 (1999).

    Article  Google Scholar 

  27. W. Oelerich, T. Klassen, and R. Bormann, “Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mgbased materials,” J. Alloys Comp., 315, 237–242 (2001).

    Article  CAS  Google Scholar 

  28. G. Barkhordarian, T. Klassen, and R. Bormann, “Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2 O5 as catalyst,” Scr. Mater., 49, 213–217 (2003).

    Article  CAS  Google Scholar 

  29. K.-F. Aguey-Zinsou, T. Nicolaisen, J. R. Ares Fernandez, et al., “Effect of nanosized oxides on MgH2 (de)hydriding kinetics,” J. Alloys Comp., 434–435, 738–742 (2007).

    Article  Google Scholar 

  30. H. Imamura and N. Sakasai, “Hydriding characteristics of Mg -based composites prepared using a ball mill,” J. Alloys Comp., 231, 810–814 (1995).

    Article  CAS  Google Scholar 

  31. H. Imamura, N. Sakasai, and Y. Kajii, “Hydrogen absorption of Mg -based composites prepared by mechanical milling: factors affecting their characteristics,” J. Alloys Comp., 232, 218–223 (1996).

    Article  CAS  Google Scholar 

  32. H. Imamura, N. Sakasai, and T. Fujinaga, “Characterization and hydriding properties of Mg–graphite composites prepared by mechanical grinding as new hydrogen storage materials,” J. Alloys Comp., 253–254, 34–37 (1997).

    Article  Google Scholar 

  33. H. Imamura, Y. Takesue, T. Akimoto, and S. Tabata, “Hydrogen-absorbing magnesium composites prepared by mechanical grinding with graphite effects of additives on composite structures and hydriding properties,” J. Alloys Comp., 293–295, 564–568 (1999).

    Article  Google Scholar 

  34. H. Imamura, S. Tabata, Y. Takesue, et al., “Hydriding–dehydriding behavior of magnesium composites obtained by mechanical grinding with graphite carbon,” Int. J. Hydrogen Energy, 25, 837–843 (2000).

    Article  CAS  Google Scholar 

  35. S. Dal Toe, S. Lo Russo, A. Maddalena, et al., “Hydrogen desorption from magnesium–graphite nanocomposites produced by ball milling,” Mater. Sci. Eng., B108, 24–27 (2004).

    Article  CAS  Google Scholar 

  36. C. X. Shang and Z. X. Guo, “Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH2,” J. Power Sources, 129, 73–80 (2004).

    Article  CAS  Google Scholar 

  37. H. Imamura, S. Tabata, N. Shigetomi, et al., “Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium,” J. Alloys Comp., 330–332, 579–583 (2002).

    Article  Google Scholar 

  38. Y. Chen and J. S. Williams, “Formation of metal hydrides by mechanical alloying,” J. Alloys Comp., 217, 181–184 (1995).

    Article  CAS  Google Scholar 

  39. J.-L. Bobet, C. Even, Y. Nakamura, et al., “Synthesis of magnesium and titanium hydride via reactive mechanical alloying: Influence of 3d-metal addition on MgH2 synthesis,” J. Alloys Comp., 298, 279–284 (2000).

    Article  CAS  Google Scholar 

  40. P. Tessier and E. Akiba, “Catalysed reactive milling,” J. Alloys Comp., 293–295, 400–402 (1999).

    Article  Google Scholar 

  41. J.-L. Bobet, B. Chevalier, M. Y. Song, and B. Darriet, “Improvement of hydrogen storage properties of Mg -based mixtures elaborated by reactive mechanical milling,” J. Alloys Comp., 356–357, 603–607 (2003).

    Google Scholar 

  42. J.-L. Bobet, B. Chevalier, M. Y. Song, et al., “Hydrogen sorption of Mg -based mixtures elaborated by reactive mechanical grinding,” J. Alloys Comp., 336, 292–296 (2002).

    Article  CAS  Google Scholar 

  43. J.-L. Bobet, F. J. Castro, and B. Chevalier, “Effects of reactive mechanical milling conditions on the physicochemical properties of Mg + Cr2 O3 mixtures,” J. Alloys Comp., 376, 205–210 (2004).

    Article  CAS  Google Scholar 

  44. S. Doppiu, L. Schultz, and O. Gutfleisch, “In situ pressure and temperature monitoring during the conversion,” J. Alloys Comp., 427, 204–208 (2007).

    Article  CAS  Google Scholar 

  45. F. C. Gennari, F. J. Castro, and G. Urretavizcaya, “Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying,” J. Alloys Comp., 321, 46–53 (2001).

    Article  CAS  Google Scholar 

  46. I. Yu. Zavalii, New Hydrides of Intermetallic Compounds and Alloys Based on Zirconium and Titanium [in Russian], Author’s Abstract of the Doctor Degree Thesis (Chemical Sciences), Lviv (2006).

  47. I. Yu. Zavaliy, R. V. Denys, I. V. Koval’chuk, et al., “Crystal structure analysis of Ti4 – x Zr x Fe2 O y deuterides,” in: Proceedings of the 8th International Conference “Hydrogen Materials Science and Chemistry of Carbon Nanomaterials (ICHMS-2005), Sevastopol (2005), pp. 94–97.

  48. R. V. Denis, I. Yu. Zavalii, V. V. Berezovets, V. Paul-Boncour, “Hydrogen sorption properties of composites based on Mg and Ti/Zr suboxides obtained by mechanochemical milling,” in: Proc. of the 10th Int. Conf. “Hydrogen Materials Science and Chemistry of Metal Hydrides (September 22–28, 2007, Sudak), Kiev (2007), pp. 358–359.

  49. Report on Project No. 38-08 “Development of New Hydride-Forming Materials Based on Magnesium, Titanium, and Rare-Earth Metals for Efficient Storage and Transport of Hydrogen” [in Ukrainian], Ukrainian National Academy of Sciences (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Zavalii.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 45, No. 2, pp. 93–101, March–April, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavalii, I.Y., Denys, R.V. & Berezovets’, V.V. Mechanochemical methods for the synthesis of new magnesium-based composite materials for hydrogen accumulation. Mater Sci 45, 248–257 (2009). https://doi.org/10.1007/s11003-009-9175-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-009-9175-6

Keywords

Navigation