Skip to main content
Log in

Formation of the science of fatigue of metals. 1870–1940

  • Published:
Materials Science Aims and scope

Abstract

The process of formation and development of the science on fatigue of metals in 1825–1940 can be split into the following periods

1. Initial period (1825–1860). This period was characterized by the appearance of railroad transport and intense introduction of machines in the industry. The failures of mechanisms caused by the phenomenon called “fatigue of metals” became quite frequent. The first attempts were made to explain this phenomenon and propose the methods for its prevention.

2. 1860–1900. This period was characterized by the development of the procedures and equipment for mechanical testing under cyclic loads, as well as of the methods aimed at processing the accumulated data and presentation of the results. The fatigue limit of steels was found depending on the parameters of loading cycles and stress concentration. The phenomenological description of fatigue was given from the viewpoint of the mechanics of materials.

3. 1900–1920. This period was characterized by the gradual formation of a new science of fatigue of metals on the boundaries of the mechanics of materials, science of metals, and physical chemistry. The first monographs systematizing and synthesizing the results obtained in the field of fatigue also appeared in this period. The variations of the microstructure of materials under cyclic loads and the microscopic topography of the fracture surfaces were observed. The foundations of the theory of cracks (fracture mechanics) were laid. The first investigations of corrosion fatigue were performed and the methods aimed at the corrosion protection of metals were developed. The number of investigated types of steels, alloys of nonferrous metals (especially aluminum alloys), and structural elements was significantly increased.

4. 1920–1940. This period was characterized by the gradual formation of the analysis of structural strength regarded as an applied branch of the science of fatigue in which machine parts and models are tested with an aim of optimization of the available materials and development of new materials, procedures, and instruments for their processing under given operating conditions and, especially under irregular loads, at low or high temperatures, and in aggressive media.

In the USSR, the investigations in the field of fatigue of metals were originated in the 1930s at the Institute of Building Mechanics of the Ukrainian Academy of Sciences by testing boiler iron and high-strength alloyed steels for fatigue resistance depending on various mechanical and technological factors. A method for the evaluation of fatigue strength of machine parts was developed and generalized to the cases of two-and three-dimensional stressed states. A statistical theory of fatigue strength based on physically grounded assumptions was proposed. At the same time, various mechanical and thermochemical methods aimed at the improvement of strength and durability of machine parts were developed (mainly) in Russia.

Almost all problems of the science of fatigue studied in the second half of the last century were posed prior to 1940. However, some of these problems, including the kinetics and mechanisms of initiation and propagation of fatigue cracks and the problems of low-cycle, corrosion, and thermal fatigue, were studied fairly superficially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Batson and J. Bradley, Static and Endurance Tests of Laminate Springs Made of Carbon and Alloy Steels, London, His Majestie’s Stationary Office, Dept of Scientific and Industrial Research, Special Rep. No. 13, Res. Spring, No. 6 (1929).

    Google Scholar 

  2. W. Kloth and T. Stroppel, “Kräfte, Beanspruchungen und Sicherheiten in den Landmaschinen,” Z. VDI, 80, Heft 4 (1936).

  3. A. Teichmann and F. Michael, “Sicherheit und Gestaltung im Flugzeugbau,” ATZU, Heft 2 (1934).

  4. A. Thum, O. Svenson, and H. Weiss, “Neuzeitliche Dehnungsmeßgeräte,” Forschungen auf dem Gebiet des Ingenieurwesens, 9 (1938).

  5. F. Seewald, “Messungen mit dem Glasritzdehnungsschreiber der Deutschen Versuchsanstadt für Luftfahrt,” Maschinenbau, 10, No. 23 (1932).

  6. E. Siebel, Handbuch der Werkstoffprüfung, Band I: Prüfund Meßeinrichtungen, Springer Verlag, Berlin (1944).

    Google Scholar 

  7. A. V. De Forest, “The rate of growth of fatigue cracks,” Trans. ASME, 58 (1936).

  8. C. H. Gibbons, “The use of the resistance wire strain gage in stress determination,” Proc. Soc. Exper. Stress Anal., 1, No. 1 (1943).

  9. H. Freise, “Spitzenwerte und Häufigkeit von Böenbelastungen an Verkehrsflugzeugen,” in: Jahrbuch 1938 der Deutschen Luftfahrtforschung (1938).

  10. H. W. Kaul, “Statistische Erhebungen über Betriebsbeanspruchungen von Flugzeugflügeln,” in: Jahrbuch 1938 der Deutschen Luftfahrtforschung: Ergänzungsband (1938).

  11. B. Filzek, Frontmessungen, Bericht 152 am 11/12.8.1942 in Jena, Lilienthalgesellschaft für Luftfahrforschung, Berlin (1942).

    Google Scholar 

  12. E. Gaßner and A. Teichmann, Ansatz und Durchfürung von Betriebsfestigkeit-Versuchen, Gemeinschaftsbericht der DVL, Berlin Adlershof und des Lehrstuhls fur Flugzeugbau an der Techn. Hochschule Aachen (1945).

  13. R. V. Rhode, “Gust loads of airplanes,” SAE Trans., 32 (1937).

  14. E. Gaßner, “Festigkeitversuche mit wiederholter Beanspruchung in Flugzeugbau,” Luftwacht. Luftwissen, 6, No. 2 (1939).

  15. E. Gaßner, “Auswirkung betriebsähnlicher Belastungensfolgen auf die Festigkeit von Flugzeugbauteilen. Kurzfassung der Dissertation gleichen Titles,” in: Jahrbuch 1941 der Deutschen Luftfahrtforschung (1941).

  16. P. Brenner, “Dynamische Festigkeit von Flugzeug-Konstruktionsteilen,” Luftfahrtforschung, 3, No. 3 (1929).

  17. H. Hertel, “Dynamische Bruchversuche mit Flugzeugbauteilen,” Z. Flugtech., 22, 15–16 (1931).

    Google Scholar 

  18. H. Müller-Stock, E. Gerold, and E. H. Schulz, “Der Einfluß einer Wechselvorbeanspruchung auf Biegezeit und Biegewechselfestigkeit von Stahl St.37,” Archiv für Eisenhütenwesen, 12, No. 3 (1938).

  19. H. F. Moore and J. B. Kommers, Fatigue of Metals, McGraw-Hill, New York (1927).

    Google Scholar 

  20. Loichi, Kaadni, and Kogakushi, “On the fatigue of metals and the internal friction,” Memoirs of College of Engineering., 11, No. 8 (1938).

  21. W. Weibull, “A statistical theory of the strength of materials,” in: Ingeniörs Vetenskaps Akademiens Handlingar, No. 151, Generalstabens Litografiska Anstalts Forlag, Stockholm (1939).

    Google Scholar 

  22. W. Weibull, “A statistical representation of fatigue failures in solids,” Trans. Royal Inst. Techn. (Sweden), No. 27 (1947).

  23. A. Teichmann, Grundsätzliche Betrachtungen über Festigkeitsversuche im Sinne der Betriebsstatistik, Lilienthal-Gesellschaft für Luftfahrtforschung, Berlin (1939).

    Google Scholar 

  24. K. Heyer, Mehrstufenversuche mit Konstruktionselementen, Bericht 152 in Jena, Lilienthal-Gesellschaft für Luftfahrtforschung, Berlin (1942).

    Google Scholar 

  25. Erfinder, Erlingen, and E. Gaßner, DRP 759264 (1940).

  26. E. Gaßner and G. Jacoby, “Betriebsfestigkeit zur Ermittlung zulässiger Entwurfsspannungen für die Flügelunterseite eines Transportflugzeuges,” Luftfahrttechnik-Raumfahrttechnik, No. 1 (1964).

  27. E. Gaßner, “Betriebsfestigkeit-Eine Bemessungsdrundlage für Konstruktionsteile mit statistisch wechselnden Betriebsbeanspruchungen,” Konstruktion, Heft 3 (1954).

  28. E. Gaßner, “Performance fatigue testing with respect to aircraft design,” in: Fatigue in Aircraft Structures, Academic Press, New York (1956).

    Google Scholar 

  29. N. Kalakutskii, The Study of Internal Stresses in Cast Iron and Steel, London (1887).

  30. H. Bühler and H. Buchholtz, “Einfluß der Eigenspannungen auf Dauerfestigkeit,” Stahl Eisen, 53 (1933).

  31. O. Föppl, “Oberflächendrücken und Druckeigenspannungen,” Mitteilungen des Wöhler-Instituts, Heft 33, Vieweg, Braunschweig (1938).

    Google Scholar 

  32. O. Föppl, “Geschichtliche Entwicklung des Oberflächendruckens zum Zwecke der Steigerung der Dauerhaltbarkeit,” Mitteilungen des Wöhler-Instituts, Heft 36, Vieweg, Braunschweig (1939).

    Google Scholar 

  33. O. Föppl, “Oberflächendrucken zum Zwecke der Steigerung der Dauerhaltbarkeit mit Hilfe des Stahlkugelgebläses,” Mitteilungen des Wöhler-Instituts, Heft 36, Vieweg, Braunschweig (1939).

    Google Scholar 

  34. O. Föppl, “Die zweckmäßigste Art der Durchführung des Oberflächendrückens,” Mitteilungen des Wöhler-Instituts, Heft 38, Vieweg, Braunschweig (1941).

    Google Scholar 

  35. O. J. Horger, “Effect of surface rolling on the fatigue strength of steel,” J. Appl. Mech., 2, No. 4 (1935).

    Google Scholar 

  36. L. M. Becker and C. E. Phillips, “Internal stresses and their effect on the fatigue resistance of spring steels,” J. Iron Steel Inst., 133 (1936).

  37. Z.R. von Manteuffel, “Einfluß der Oberflächenbeschaffenheit auf die Dauerhaldbarkeit von wärmebehandelten Federn,” in: Deutsche Kraftfahrtforschung, Zwischenbericht No. 20,. (1935).

  38. A. Hankins, H. L. Becker, and H. P. Mills, “The effect of surface conditions on the fatigue of steels,” J. Iron Steel Inst., 133 (1936).

  39. C. Lea, “Effect of discontinuities and surface conditions on failure under repeated stress,” Engineering, 144 (1937).

  40. J.-B. Kommers, “Repeated stress testing. I. An investigation of a commercial endurance test. II. A proposed quality factor,” Int. Assoc. Testing Mater., 4A, 4B (1912).

  41. E. Houdremont and R. Mailänder, “Dauerbugeversuche mit Stählen,” Stahl Eisen, 49 (1929).

  42. B. C. Hanley and T. J. Dolan, “Surface finish,” Amer. Soc Mech. Engineers. Metals Engineering-Design, 100 (1953).

  43. A. Thum, “Die werkstofftechnischen Grundlagen einer neuen Konstruktionlehre,” Schr. Hess. Hochsch., Heft 4 (1932).

  44. A. Thum and H. Oschatz, “Möglichkeiten zur Steigerung der Dauerhaltbarkeit von Konstruktionsteilen,” Maschinenschaden, Heft 2 (1933).

  45. A. Thum and W. Bautz, “Zeitfestigkeit,” Z. VDI, 81 (1937).

  46. A. Thum, “Der Werkstoff in der konstruktiven Berechung,” Stahl Eisen, 59 (1939).

  47. A. Thum, “Die Entwicklung der Lehre von der Gestaltfestigkeit,” Z. VDI, 88 (1944).

  48. M. A. Voropaev, Fatigue of Cast Iron [in Russian], Kiev Polytechnic Institute, Kiev (1909).

    Google Scholar 

  49. M. A. Voropaev, On the Problem of Fatigue of Cast Iron under Repeated Loads [in Russian], Kiev Polytechnic Institute, Kiev (1914).

    Google Scholar 

  50. K. K. Symins’kyi, “Materials to the problem of fatigue of welded iron of bridges,” in: Collection of Works of the Institute of Engineering Mechanics, Academy of Sciences of the Ukrainian RSR [in Russian], No. 2 (1927).

  51. I. V. Kudryavtsev, Internal Stresses as a Strength Margin in Machine Building [in Russian], Mashgiz, Moscow (1951).

    Google Scholar 

  52. S. V. Serensen, “Development of fatigue testing metals,” Zavod. Lab., No. 10 (1967).

  53. M. I. Chernyak, “On the works of the Institute of Building Mechanics of the Academy of Sciences of the Ukrainian RSR in the field of fatigue strength of metals,” Prikl. Mekh., No. 3 (1959).

  54. S. V. Serensen and M. É. Garf, “Investigations of the fatigue of materials and structures in the Ukraine in the Soviet period,” Prikl. Mekh., 3, No. 10 (1967).

    Google Scholar 

  55. G. N. Savin and V. V. Georgievskaya, Development of Mechanics in the Ukraine in the Soviet Period [in Russian], Izd. Akad. Nauk Ukr. SSR, Kiev (1961).

    Google Scholar 

  56. S. V. Serensen, Strength of Metal and the Numerical Analysis of Machine Parts Under Variable Loads [in Ukrainian], Izd. Akad. Nauk Ukr. SSR, Kiev (1937).

    Google Scholar 

  57. O. Föppl, E. Becker, and G. von Heydekampf, Die Dauerprüfung der Werkstoffe hinsichtlich ihrer Schwingfestigkeit und Dämpfungsfähigkeit, Springer, Berlin (1929).

    Google Scholar 

  58. L. I. Kukanov and K. M. Yur’ev, Methods for Fatigue Testing of Metals [in Russian], Gosmashtekhizdat, Moscow (1932).

    Google Scholar 

  59. N. N. Davidenkov and E. M. Shevandin, “Fatigue crack,” Zh. Tekhn. Fiz., Issue 2, 3 (1931).

  60. N. N. Davidenkov, Fatigue of Metals [in Russian], Izd. Akad. Nauk Ukr. SSR, Kiev (1949).

    Google Scholar 

  61. S. V. Serensen, “Problem of vibration strength of metals in the design of machine parts,” Nauk. Pratsi Inst. Bud. Mekh., No. 1, VUAN, Kiev (1934).

    Google Scholar 

  62. S. V. Serensen, “Stress concentration and fatigue of crankshafts,” Nauk. Pratsi Inst. Bud. Mekh., No. 13, VUAN, Kiev (1935).

    Google Scholar 

  63. S. V. Serensen, Fatigue of Metals and Design of Machine Parts [in Russian], ONTI, Moscow (1937).

    Google Scholar 

  64. S. V. Serensen, Strength Hypotheses Under Variable Loads [in Ukrainian], Izd. Akad. Nauk Ukr. SSR, Kiev (1938).

    Google Scholar 

  65. S. V. Serensen, “Strength criteria for the three-dimensional stressed state,” Dopov. Akad. Nauk Ukr. RSR, No. 2 (1940).

  66. S. V. Serensen, “On the evaluation of service life under the action of variable stresses with variable amplitude,” Vestn. Mashinostr., No. 7/8 (1944).

  67. S. V. Serensen, “Testing of alloyed structural steels for strength under variable loads,” Stal’, No. 3 (1940).

  68. S. V. Serensen and I. M. Tetel’baum, Dynamic Strength in Machine Building: A Handbook [in Russian], Mashgiz, Moscow (1940).

    Google Scholar 

  69. M. M. Afanas’ev, Causes of Crack Initiation in Steam Boilers [in Ukrainian], Izd. Akad. Nauk Ukr. SSR, Kiev (1938).

    Google Scholar 

  70. N. N. Afanas’ev, “Fatigue of boiler iron,” Vestn. Metallopromyshl., No. 3 (1939).

  71. M. M. Afanas’ev, Investigations of Vibration Strength [in Ukrainian], Izd. Akad. Nauk Ukr. SSR, Kiev (1935).

    Google Scholar 

  72. N. N. Afanas’ev, “On the fatigue limit of notched specimens,” Zh. Tekhn. Fiz., No. 8 (1936).

  73. M. M. Afanas’ev, Influence of Impact Loading on the Fatigue Limit of Nitrided Specimens [in Ukrainian], Izd. Akad. Nauk Ukrainian RSR, Kiev (1938).

    Google Scholar 

  74. N. N. Afanas’ev, “Tensile stress-strain diagram of metals and their sensitivity to notches under variable loading,” Zh. Tekh. Fiz., 11, No. 4 (1941).

    Google Scholar 

  75. N. N. Afanas’ev, “Approximate evaluation of the stress concentration factor,” Zh. Tekh. Fiz., No. 7 (1936).

  76. N. N. Afanas’ev, “Statistical theory of the fatigue strength of metals,” Zh. Tekh. Fiz., 10, No. 19 (1940).

  77. E. Orowan, “Theory of the fatigue of metals,” Proc. Roy. Soc., 171 (1939).

  78. N. N. Afanas’ev, “Theory of fatigue strength for the complex stressed state,” Zh. Tekh. Fiz., 16, No. 5 (1946).

  79. N. N. Afanas’ev, Statistical Theory of Fatigue Strength [in Russian], Izd. Akad. Nauk Ukrainian SSR, Kiev (1953).

    Google Scholar 

  80. S. V. Malashenko, “Investigations of the vibration strength of cladded duralumin and the influence of rivets and corrosion on the vibration strength,” Nauk. Pratsi Inst. Bud. Mekh., No. 22, VUAN, Kiev (1936).

    Google Scholar 

  81. K. K. Symins’kyi, “On the fatigue of wood under repeated loading,” Nauk.-Tekh. Visn., No. 1 (1926).

  82. F. P. Belyankin, Strength of Wood Under the Influence of Repeated Loading [in Ukrainian] Izd. Akad. Nauk Ukrainian RSR, Kiev (1936).

    Google Scholar 

  83. F. P. Belyankin, Effect of Asymmetric Loading Cycles and Stress Concentration on the Strength of Wood Under Repeated Loading [in Ukrainian], Izd. Akad. Nauk Ukrainian SSR, Kiev (1938).

    Google Scholar 

  84. S. V. Serensen, M. É. Garf, and L. A. Kozlov, Machines for Fatigue Testing: Design and Construction [in Russian], Mashgiz, Moscow (1957).

    Google Scholar 

  85. E. O. Paton, D. I. Bernshtein, and B. N. Gorbunov, Resistance of Welded Joints Under Vibration Loading [in Ukrainian], Institute of Electric Welding, Kiev (1936).

    Google Scholar 

  86. E. O. Paton and B. N. Gorbunov, Resistance of Welded Beams Under Plastic Deformation by Repeated Loads [in Ukrainian], Izd. Akad. Nauk Ukrainian SSR, Kiev (1935).

    Google Scholar 

  87. V. G. Raevskii, Vibration Testing of Welded Units [in Russian], Izd. Akad. Nauk Ukrainian SSR, Kiev (1941).

    Google Scholar 

  88. F. F. Vitman, Residual Stresses [in Russian], Gostekhteorizdat, Moscow (1933).

    Google Scholar 

  89. I. V. Kudryavtsev, “Evaluation of residual stresses in beams by the method of a single cut,” Zavod. Lab., No. 6 (1938).

  90. I. V. Kudryavtsev and V. I. Prosvirin, “Fatigue of steels with various types of thermochemical surface treatment,” Vestn. Metallopromyshl., No. 9 (1936).

  91. S. V. Serensen, “Surface sensitivity of steel under the action of vibration loads caused by thermal treatment,” Tekh. Vozdush. Flota, No. 6 (1936).

  92. E. M. Shevandin and I. Kaganovich, “Influence of the cold-work surface hardening caused by treatment on the fatigue limit of steel,” Zh. Tekh. Fiz., 10, Issue 4 (1940).

    Google Scholar 

  93. S. V. Serensen, “Effect of surface smoothness on the fatigue resistance of metals,” Vestn. Metallopromuyshl., No. 1 (1940).

  94. I. Kudryavtsev, M. Saverin, and A. Ryabchenkov, Methods of Surface Hardening of Machine Parts [in Russian], Mashgiz, Moscow (1947).

    Google Scholar 

  95. A. I. Samokhotskii, Fatigue of Ferrous and Nonferrous Metals [in Russian], Oborongiz, Moscow (1940).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is the final part of a series of works. The previous parts were published in Materials Science, 42, No. 5, 673–680 (2006), 42, No. 6, 814–822 (2006), and 43, No. 2, 265–274 (2007).

__________

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 43, No. 6, pp. 101–118, November–December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yarema, S.Y. Formation of the science of fatigue of metals. 1870–1940. Mater Sci 43, 869–885 (2007). https://doi.org/10.1007/s11003-008-9034-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-008-9034-x

Keywords

Navigation