Skip to main content
Log in

Models of thermomechanics of magnetizable and polarizable conducting deformable solids

  • Published:
Materials Science Aims and scope

Abstract

We give a brief survey of problems of thermomechanics of conducting deformable solids subjected to the action of external electromagnetic fields of radio-frequency and visual ranges, in particular, mechanical, thermal, and diffusion processes depending on the conductivity of bodies and their capacity for polarization and magnetization. We estimate trends and prospects in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Truesdell R. Toupin (1960) The classical field theories S. Flügge (Eds) Handbuch der Physik Springer Berlin 226–793

    Google Scholar 

  2. Ya. S. Pidstryhach (1963) ArticleTitleDifferential equations of the diffusion theory of deformation of solid Dop. Akad. Nauk Ukr. RSR 3 336–340

    Google Scholar 

  3. L. I. Sedov (1965) ArticleTitleMathematical methods for the construction of new models of continua Usp. Mat. Nauk 20 IssueID5 121–180

    Google Scholar 

  4. A. C. Eringen (1967) Mechanics of Continuum Wiley New York

    Google Scholar 

  5. Ya. S. Pidstryhach and Ya. I. Burak, “Some aspects of the construction of new models of mechanics of solid with regard for electron processes,” Visn. Akad. Nauk Ukr. RSR, No. 12, 18–31 (1970).

  6. L. I. Sedov (1976) Mechanics of Continuum Nauka Moscow

    Google Scholar 

  7. S. A. Ambartsumyan G. E. Bagdasaryan M. V. Belubekyan (1977) Magnetoelasticity of Shells and Plates Nauka Moscow

    Google Scholar 

  8. A. A. Il’yushin (1978) Mechanics of Continuum Moscow University Moscow

    Google Scholar 

  9. C. A. Maugin (1981) ArticleTitleElectromagnetic internal variables in electromagnetic continua Arch. Mech. 33 IssueID1 927–936

    Google Scholar 

  10. W. Nowacki (1983) Efekty Elektromagnetyczne w Stałych Ciałach Odkształcalnych Państwowe Wydawnictwo Naukowe Warsaw

    Google Scholar 

  11. A. C. Eringen G. A. Maugin (1989) Electrodynamics of Continua Springer New York

    Google Scholar 

  12. G. A. Maugin (1988) Continuum Mechanics of Electromagnetic Solids Elsevier New York

    Google Scholar 

  13. K. Hutter A. A. Ven Particlevan de (1978) Field-Matter Interaction in Thermoelastic Solids Springer Berlin

    Google Scholar 

  14. R. A. Grot A. C. Eringen (1966) ArticleTitleRelativistic continuum mechanics. Part 1. Mechanics and thermodynamics; Part 2. Electromagnetic interactions with matter Int. J. Eng. Sci. 4 IssueID6 611–638

    Google Scholar 

  15. Mechanics of Coupled Fields in Structural Elements, Vol. 4, V. G. Karnaukhov and I. F. Kirichok, Electrothermoviscoelasticity [in Russian], Naukova Dumka, Kiev (1988).

  16. S. R. Grott Particlede L. G. Suttorp (1972) Foundations of Electrodynamics North-Holland Amsterdam

    Google Scholar 

  17. A. Sommerfeld (1952) Electrodynamics Academic Press New York

    Google Scholar 

  18. Ya. P. Terletskii Yu. P. Rybakov (1980) Electrodynamics Vysshaya Shkola Moscow

    Google Scholar 

  19. L. J. Chu H. A. Haus P. Penfield (1966) ArticleTitleThe force density in polarizable and magnetizable fluids Proc. IEEE 54 IssueID7 920–935

    Google Scholar 

  20. Y. H. Pao (1978) Electromagnetic forces in deformable continua S. Nemat-Nasser (Eds) Mechanics Today Pergamon New York 209–305

    Google Scholar 

  21. P. Penfield H. A. Haus (1967) Electrodynamics of Moving Media MIT Cambridge

    Google Scholar 

  22. L. D. Landau E. M. Lifshits (1973) Field Theory Nauka Moscow

    Google Scholar 

  23. Ya. P. Terletskii (1973) Statistical Physics Vysshaya Shkola Moscow

    Google Scholar 

  24. I. E. Tamm (1976) Foundations of the Theory of Electricity Nauka Moscow

    Google Scholar 

  25. R. A. Toupin (1956) ArticleTitleThe elastic dielectrics J. Ration. Mech. Anal. 5 850–915

    Google Scholar 

  26. R. A. Toupin (1963) ArticleTitleA dynamical theory of elastic dielectrics Int. J. Eng. Soc. 1 IssueID1 101–126

    Google Scholar 

  27. K. Hutter Y. H. Pao (1974) ArticleTitleA dynamical theory of magnetizable elastic solids with thermal and electrical conduction J. Elast. 4 89–114

    Google Scholar 

  28. K. Hutter (1975) ArticleTitleOn thermodynamics and thermostatics of viscous thermoelastic solids in electromagnetic fields. A Lagrangian formulation Arch. Rat. Mech. Anal. 58 339–368 Occurrence Handle0332.73095

    MATH  Google Scholar 

  29. K. Hutter (1977) ArticleTitleA thermodynamic theory of fluids and solids in electromagnetic fields Arch. Rat. Mech. Anal. 64 269–298

    Google Scholar 

  30. Ya. I. Burak (1966) ArticleTitleEquations of electroelasticity of an isotropic dielectric in an electrostatic field Fiz.-Khim. Mekh. Mater. 2 IssueID1 51–57

    Google Scholar 

  31. Ya. I. Burak B. P. Galapats Y. S. Podstrigach (1974) Original equations of the theory of deformation of nonpolarized conducting solids Selected Problems of Applied Mechanics VINITI Moscow 167–178

    Google Scholar 

  32. Y. I. Burak B. P. Halapats B. M. Hnidets’ (1978) Physicomechanical Processes in Conducting Bodies Naukova Dumka Kiev

    Google Scholar 

  33. Y. H. Pao K. Hutter (1975) ArticleTitleElectrodynamics of moving elastic solids and viscous fluids Proc. IEEE 63 IssueID7 1011–1021

    Google Scholar 

  34. J. B. Alblas (1974) Electro-Magneto-Elasticity J. L. Zeman F. Ziegler (Eds) Topics in Applied Continuum Mechanics Springer Wien 71–114

    Google Scholar 

  35. V. A. Zhelnorovich (1979) ArticleTitleOn models of magnetizable and polarizable media with microstructure Dokl. Akad. Nauk SSSR 248 IssueID2 333–340

    Google Scholar 

  36. L. I. Sedov A. G. Tsypkin (1979) ArticleTitleOn the construction of models of continua interacting with electromagnetic field Prikl. Mat. Mekh. 43 IssueID3 387–400

    Google Scholar 

  37. G. A. Maugin A. C. Eringen (1972) ArticleTitlePolarized elastic materials with electronic spin-a relativistic approach J. Math. Phys. 13 IssueID11 1777–1788

    Google Scholar 

  38. G. A. Maugin (1975) ArticleTitleOn spin relaxation in deformable ferromagnets Physika A81 454–468

    Google Scholar 

  39. R. D. Mindlin (1968) ArticleTitlePolarization gradient in elastic dielectrics Int. J. Solid. Struct. 4 IssueID6 637–642

    Google Scholar 

  40. E. S. Suhubi (1969) ArticleTitleElastic dielectrics with polarization gradient Int. J. Eng. Sci. 7 993–997

    Google Scholar 

  41. H. F. Tiersten (1964) ArticleTitleCoupled magnetomechanical equations for magnetically saturated insulators J. Math. Phys. 5 1298–1318

    Google Scholar 

  42. R. C. Dixon A. C. Eringen (1965) ArticleTitleA dynamical theory of polar elastic dielectrics Int. J. Eng. Sci. 3 IssueID3 359–398

    Google Scholar 

  43. H. F. Tiersten C. F. Tsai (1972) ArticleTitleOn the interactions of the electromagnetic field with heat conducting deformable insulators J. Math. Phys. 13 IssueID2 361–378

    Google Scholar 

  44. G. A. Maugin A. C. Eringen (1972) ArticleTitleDeformable magnetizable saturated media. Part 1. Field equations J. Math. Phys. 13 IssueID2 143–155

    Google Scholar 

  45. G. A. Maugin A. C. Eringen (1972) ArticleTitleDeformable magnetizable saturated media. Part 2. Constitutive theory J. Math. Phys. 13 IssueID9 1334–1347

    Google Scholar 

  46. Y. H. Pao C. S. Yeh (1973) ArticleTitleA linear theory for soft ferromagnetic elastic solids Int. J. Eng. Sci. 11 IssueID7 415–436

    Google Scholar 

  47. L. T. Chernyi (1974) ArticleTitleConstruction of models of magnetoelastic continua with regard for magnetic hysteresis and plastic deformations Nauchn. Tr. Inst. Mekh. Moscow State Univ. 31 100–119

    Google Scholar 

  48. V. V. Kolokol’chikov B. L. Sidorov (1975) ArticleTitleOn small elastoplastic deformations of dielectrics Prikl. Mekh. Tekh. Fiz. 2 108–112

    Google Scholar 

  49. G. A. Maugin (1976) ArticleTitleDeformable dielectrics, field equations for a dielectric made of several molecular species Arch. Mech. 28 IssueID4 679–692

    Google Scholar 

  50. Y. Ersoy E. Kiral (1978) ArticleTitleA dynamical theory for polarizable and magnetizable magneto-electrothermoviscoelastic, electrically and thermally conductive solids having magnetic symmetry Int. J. Eng. Sci. 16 IssueID7 483–492

    Google Scholar 

  51. P. Germain (1973) Cours de Mécanique des Milieux Continus, Tome 1. Théorie Générale Masson Paris

    Google Scholar 

  52. W. Nowacki, Dynamiczne Zagadnienia Termosprężystości, Warsaw (1966).

  53. L. I. Sedov (1976) Mechanics of Continuum Nauka Moscow

    Google Scholar 

  54. C. Truesdell (1972) A First Course in Rational Continuum Mechanics The Johns Hopkins University Baltimore, Maryland

    Google Scholar 

  55. A. A. Il’yushin (1963) Plasticity. Foundations of the Mathematical Theory Academy of Sciences of the USSR Moscow

    Google Scholar 

  56. B. D. Coleman (1964) ArticleTitleThermodynamics of materials with memory Arch. Rat. Mech. Anal. 17 IssueID1 1–46

    Google Scholar 

  57. B. D. Coleman M. E. Gurtin (1967) ArticleTitleThermodynamics with internal state variables J. Chem. Phys. 47 IssueID2 597–613

    Google Scholar 

  58. A. A. Il’yushin B. E. Pobedrya (1970) Foundations of the Mathematical Theory of Thermoviscoelasticity Nauka Moscow

    Google Scholar 

  59. R. M. Christensen (1971) Theory of Viscoelasticity. An Introduction Academic Press New York

    Google Scholar 

  60. W. A. Day (1972) The Thermodynamics of Simple Materials with Fading Memory Springer Berlin

    Google Scholar 

  61. Yu. N. Shevchenko R. G. Terekhov (1982) Physical Equations of Thermoviscoplasticity Naukova Dumka Kiev

    Google Scholar 

  62. H. Demiray A. C. Eringen (1973) ArticleTitleOn the constitutive equations of polar elastic dielectrics Lett. Eng. Appl. Sci. 1 IssueID6 517–527

    Google Scholar 

  63. H. F. Tiersten (1971) ArticleTitleOn the nonlinear equations of thermoelectroelasticity Int. J. Eng. Sci. 9 587–603

    Google Scholar 

  64. H. G. Lorenzi H. F. Tiersten (1975) ArticleTitleOn the interaction of the electromagnetic field with heat conducting deformable semiconductors J. Math. Phys. 16 IssueID4 938–957

    Google Scholar 

  65. W. F. Brown (1966) Magnetoelastic Interactions Springer Berlin

    Google Scholar 

  66. A. F. Ulitko, “On the theory of oscillations of piezoceramic bodies,” in: Thermal Stresses in Structural Elements [in Russian], Issue 15 (1975), pp. 90–98.

  67. A. F. Ulitko (1982) Some specific features of the statement of boundary problems of electroelasticity Contemporary Problems of Mechanics and Aircraft Nauka Moscow 290–300

    Google Scholar 

  68. V. T. Grinchenko A. F. Ulitko N. A. Shul’ga (1983) Mechanics of Coupled Fields in Structural Elements Naukova Dumka Kiev

    Google Scholar 

  69. H. F. Tiersten (1969) Linear Piezoelectric Plate Vibration Plenum New York

    Google Scholar 

  70. R. D. Mindlin (1974) ArticleTitleEquation of high frequency vibration of thermopiezoelectric crystal plates Int. J. Solid. Struct. 10 IssueID6 625–637

    Google Scholar 

  71. V. Z. Parton B. A. Kudryavtsev (1988) Electromagnetoelasticity of Piezoelectric and Conducting Bodies Nauka Moscow

    Google Scholar 

  72. A. N. Guz’ F. G. Makhort (Eds) (1989) Mechanics of Coupled Fields in Structural Elements Naukova Dumka Kiev

    Google Scholar 

  73. N. A. Shul’ga A. M. Bolkisev (1990) Oscillations of Piezoelectric Bodies Naukova Dumka Kiev

    Google Scholar 

  74. V. G. Karnaukhov (1982) Coupled Problems of Thermoviscoelasticity Naukova Dumka Kiev

    Google Scholar 

  75. V. G. Karnaukhov V. V. Mikhailenko (2002) ArticleTitleNonlinear one-frequency oscillations and dissipative heating of inelastic piezoelectric bodies Prikl. Mekh. 38 IssueID5 13–45

    Google Scholar 

  76. G. Lianis (1974) ArticleTitleRelativistic thermodynamics of viscoelastic dielectrics Arch. Rat. Mech. Anal. 55 IssueID4 300–331

    Google Scholar 

  77. A. A. Shtein (1977) ArticleTitleModels of polarizable media and averaged relations corresponding to them in the case of a high-frequency electromagnetic field Prikl. Mat. Mekh. 41 IssueID2 271–281

    Google Scholar 

  78. M. F. McCarthy (1984) ArticleTitleOne-dimensional pulse propagation in deformable dielectrics with internal state variables Arch. Mech. 36 IssueID1 97–108

    Google Scholar 

  79. S. Dost S. Gozde (1985) ArticleTitleOn thermoelastic dielectrics with polarization effects Arch. Mech. 37 IssueID1 157–176

    Google Scholar 

  80. L. Restuccia G. A. Kluitenberg (1992) ArticleTitleOn the heat dissipation function for dielectric relaxation phenomena in anisotropic media Int. J. Eng. Sci. 30 IssueID3 305–317

    Google Scholar 

  81. L. Knopoff (1955) ArticleTitleThe interactions between elastic waves motions and a magnetic field in electric conductor J. Geophys., Res. 60 441–456

    Google Scholar 

  82. P. Chadwick (1957) Elastic wave propagation in a magnetic field Actes IX Congr. Intern. Mech. Appl. Univ. Bruxelles Bruxelles 143–158

    Google Scholar 

  83. S. Kaliski J. Petykiewicz (1960) ArticleTitleDynamical equations of motion coupled with the field of temperatures and resolving functions for elastic and inelastic anisotropic bodies in the magnetic field Proc. Vibr. Probl. 1 IssueID3 81–94

    Google Scholar 

  84. J. W. Dunkin A. C. Eringen (1963) ArticleTitlePropagation of waves in an electromagnetic elastic solid Int. J. Eng. Sci. 1 461–495

    Google Scholar 

  85. M. F. McCarthy (1966) ArticleTitleThe propagation and growth of plane acceleration waves in a perfectly electrically conducting elastic material in a magnetic field Int. J. Eng. Sci. 4 361–381

    Google Scholar 

  86. G. Paria (1967) ArticleTitleMagneto-elasticity and magneto-thermoelasticity Adv. Appl. Mech. 10 73–112

    Google Scholar 

  87. F. C. Moon Y. H. Pao (1968) ArticleTitleMagnetoelastic buckling of a thin plate J. A. M. 35 53–58

    Google Scholar 

  88. A. A. F. Ven Particlevan de (1978) ArticleTitleMagnetoelastic buckling of thin plates in a uniform transverse magnetic field J. Elast. 8 297–312

    Google Scholar 

  89. C. H. Popelar (1972) ArticleTitlePostbuckling analysis of a magnetoelastic beam J. A. M. 39 207–211

    Google Scholar 

  90. D. V. Wallerstein M. O. Peach (1972) ArticleTitleMagnetoelastic buckling of beams and thin plates of magnetically soft materials J. A. M. 39 451–455

    Google Scholar 

  91. Ya. S. Podstrigach Ya. I. Burak V. F. Kondrat (1982) Magnetothermoelasticity of Conducting Bodies Naukova Dumka Kiev

    Google Scholar 

  92. K. B. Kazaryan (1979) ArticleTitleOn the stability of a current-carrying shell in an external magnetic field Izv. Akad. Nauk. Arm. SSR, Mekh. 32 IssueID1 26–35

    Google Scholar 

  93. S. A. Ambartsumyan G. E. Bagdasaryan (1985) ArticleTitleForced oscillations of a thin ideally conducting plate in a longitudinal magnetic field Dokl. Akad. Nauk Arm. SSR 80 IssueID1 28–32

    Google Scholar 

  94. S. A. Ambartsumyan M. V. Belubekyan (1991) Some Problems of Electromagnetoelasticity of Plates Yerevan University Yerevan

    Google Scholar 

  95. F. C. Moon (1973) ArticleTitleThe buckling of a dielectric fiber in an electric field Lett. Appl. Eng. Sci. 1 327–336

    Google Scholar 

  96. B. A. Kudryavtsev M. Z. Parton (1981) Magnetothermoelasticity Advances in Science and Technique. Ser. Mechanics of Deformable Solid VINITI Moscow 3–59

    Google Scholar 

  97. F. C. Moon (1978) ArticleTitleProblems in magneto-solid-mechanics Mechanics Today 4 307–390

    Google Scholar 

  98. M. R. Korotkina (1988) Electromagnetoelasticity Moscow University Moscow

    Google Scholar 

  99. C. E. Beevers R. E. Craine (1985) ArticleTitleWave propagation in a thermoelastic dielectric J. Mech. Theor. Appl. 4 159–174

    Google Scholar 

  100. R. M. Bower P. T. Chen (1978) ArticleTitleOn the behavior of acceleration waves in elastic dielectrics with internal state variables Trans. ASME. Ser. E 45 IssueID4 745–748

    Google Scholar 

  101. K. Hutter (1975) ArticleTitleWave propagation and attenuation in paramagnetic and soft ferromagnetic materials. Part 1 Int. J. Eng. Sci. 13 1067–1084

    Google Scholar 

  102. K. Hutter (1976) ArticleTitleWave propagation and attenuation in paramagnetic and soft ferromagnetic materials. Part 2 Int. J. Eng. Sci. 14 883–894

    Google Scholar 

  103. D. Acharya P. R. Sengupta (1978) ArticleTitleMagnetothermoelastic plane Lamb’s problem in an initially stressed conducting medium Gerlands Beitr. Geophys. 87 IssueID1 452–455

    Google Scholar 

  104. D. S. Chandrasekharaiah (1971) ArticleTitleThe propagation of magneto-thermo-elastic plane waves in an initially stressed medium Tensor 22 IssueID3 285–295

    Google Scholar 

  105. Ya. S. Podstrigach, “Diffusion theory of deformation of an isotropic continuum,” Vopr. Mekh. Real. Tverd. Tela, No. 2, 71–99 (1964).

  106. I. P. Vasil’chenko B. L. Pelekh (1980) Foundations of the Electromagnetic Method of Determination of Stresses Naukova Dumka Kiev

    Google Scholar 

  107. B. L. Pelekh, I. P. Vasil’chenko, and M. O. Malezhik, “Some theoretical and experimental methods of determination of the stress-strain state of structural elements made of anisotropic reinforced plastic materials. I. Theoretical foundations of the experimental method of investigation of the stressed state of anisotropic bodies in an invisible range of electromagnetic waves,” Mekh. Kompozit. Mater., No. 2, 359–361 (1977).

  108. A. N. Guz’ F. G. Makhort O. I. Gushcha (1977) Introduction to Acoustoelasticity Naukova Dumka Kiev

    Google Scholar 

  109. F. G. Makhort (1985) ArticleTitleOn the theory of propagation of magnetoelastic waves in conducting bodies with initial stresses Prikl. Mekh. 21 IssueID6 3–11

    Google Scholar 

  110. B. I. Kolodii (1969) ArticleTitleDetermination of the temperature fields and stresses in a hollow cylinder under induction heating Prikl. Mekh. 5 IssueID10 35–41

    Google Scholar 

  111. Ya. S. Podstrigach and B. I. Kolodii, “Temperature fields and stresses under induction heating of an elastic layer,” in: Heat Stresses in Structural Elements [in Russian], Issue 10, (1970), pp. 208–214.

  112. G. I. Babat (1965) Induction Heating of Metals and Its Industrial Application énergiya Moscow

    Google Scholar 

  113. A. E. Slukhotskii V. S. Nemkov N. A. Pavlov A. V. Bamuner (1981) Installation for Induction Heating énergoizdat Leningrad

    Google Scholar 

  114. Ya. I. Burak A. R. Gachkevich (1974) ArticleTitleOn the influence of an electromagnetic field periodic in time on the temperature fields and stresses in a conducting layer Prikl. Mekh. 10 IssueID7 42–48

    Google Scholar 

  115. Ya. S. Podstrigach Ya. I. Burak A. R. Gachkevich L. V. Chernyavskaya (1977) Thermoelasticity of Conducting Bodies Naukova Dumka Kiev

    Google Scholar 

  116. A. R. Gachkevich B. I. Chornyi (1981) Determination of the stressed state of conducting shells in the case of surface induction heating Investigations in Mechanics of Deformable Solid Armenian Academy of Sciences Yerevan 75–80

    Google Scholar 

  117. A. R. Gachkevich (1992) Thermomechanics of Conducting Bodies Under the Action of Quasistationary Electromagnetic Fields Naukova Dumka Kiev

    Google Scholar 

  118. O. Haczkiewicz Z. Kasperski (1999) Modele i Metody Matematyczne w Zagadnieniach Brzegowych Termomechaniki Ciał Przewodzących Oficyna Wydawnicza Politechniki Opolskiej Opole

    Google Scholar 

  119. O. Hachkevych Z. Kasperski B. Chornyi O. Dzyubachyk (2003) ArticleTitleStudy of the thermostressed state of electrically conductive nonferromagnetic shells J. Theor. Appl. Mech. 41 IssueID3 521–536

    Google Scholar 

  120. A. R. Gachkevich and R. S. Musii, “Temperature fields and thermoelastic state of conducting plates under magnetic impact,” Mat. Met. Fiz.-Mekh. Polya, Issue 7, 115–118 (1978).

  121. A. R. Gachkevich R. S. Musii (1993) Thermomechanics of Conducting Bodies Under the Action of Nonstationary Electromagnetic Fields Institute of Applied Problems of Mechanics and Mathematics, Ukrainian National Academy of Sciences Lviv

    Google Scholar 

  122. Ya. I. Burak, O. R. Hachkevych, and R. S. Musii, “Problems of thermomechanics of conducting shells under conditions of the action of nonstationary electromagnetic fields of the pulse type,” Visn. Donetsk Univ., Ser. A, Prypod. Nauk., Issue 2, 70–75 (2002).

  123. O. Hachkevych R. Musii H. Stasyuk (2003) ArticleTitleThermostressed state of a hollow metallic cylinder in the course of electromagnetic action in the damped sinusoid mode Fiz.-Khim. Mekh. Mater. 39 IssueID5 67–72

    Google Scholar 

  124. V. I. Dresvyannikov, “Numerical procedure of calculation of coupled thermomechanical and electromagnetic fields in elastoplastic bodies,” Prikl. Probl. Prochn. Plastichn., Issue 16, 40–49 (1980).

  125. V. I. Dresvyannikov (1984) ArticleTitleNumerical simulation of nonstationary magnetothermoplastic processes in conducting bodies Probl. Prochn. 10 85–89

    Google Scholar 

  126. H. Knoepfel (1970) Pulsed High Magnetic Fields. Physical Effects and Generation Methods Concerning Pulsed Fields up to the Megaoersted Level Amsterdam North-Holland

    Google Scholar 

  127. Ya. I. Burak, A. R. Gachkevich, and M. T. Solodyak, “Thermoelasticity of conducting magnetically soft bodies in external stationary electromagnetic fields,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 2, 44–48 (1987).

  128. Ya. I. Burak, A. R. Gachkevich, and M. T. Solodyak, “Thermoelasticity of conducting magnetically hard bodies in external stationary electromagnetic fields,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 5, 26–29 (1988).

  129. M. T. Solodyak, Temperature Fields and Stresses in Ferromagnetic Conducting Bodies under Induction Heating [in Russian], Candidate-Degree Thesis (Physical and Mathematical Sciences), Lvov (1985).

  130. A. R. Gachkevich M. T. Solodyak (1989) ArticleTitleThermomechanical behavior of a layer under the action of a harmonic electromagnetic field Prikl. Mekh. 25 IssueID12 93–101

    Google Scholar 

  131. A. R. Gachkevich M. T. Solodyak (1987) Resonance phenomena in a magnetically soft conducting layer under the action of a stationary electromagnetic field Problems of Dynamics of Interaction of Deformable Media Armenian Academy of Sciences Yerevan 119–123

    Google Scholar 

  132. Z. S. Agranovich N. I. Derevyanko (1975) ArticleTitleDeformation of a magnetized body by the action of an external magnetic field Prikl. Mekh. 11 IssueID11 3–8

    Google Scholar 

  133. Z. S. Agranovich N. I. Derevyanko (1979) ArticleTitleDeformation of bars by the action of an external magnetic field Prikl. Mekh. 15 IssueID5 67–72

    Google Scholar 

  134. L. V. Selezova O. P. Krivenko (1986) A ferromagnetic elastic layer in a magnetomechanical field Some Problems of the Theory of Asymptotic Methods of Nonlinear Mechanics Naukova Dumka Kiev 169–172

    Google Scholar 

  135. O. R. Hachkevych R. D. Ivas’ko (2000) ArticleTitleThermomechanics of ferrite bodies in a quasistationary electromagnetic field Mat. Met. Fiz.-Mekh. Polya 43 IssueID1 161–172

    Google Scholar 

  136. A. Haczkiewicz R. Iwaśko Z. Kasperski (2002) ArticleTitleModelowanie matematyczne procesów termomechanicznych w warstwie ferrytowej przy oddziaływaniu zewnętrznego quasi-ustalonego pola elektromagnetycznego Zeszyty Naukowe Politechniki Opolskiej, Ser. Matematyka 18 IssueID287 37–60

    Google Scholar 

  137. O. R. Hachkevych B. D. Drobenko (2002) ArticleTitleMethod for numerical investigation of electromagnetic and temperature fields under induction heating of conducting cylindrical bodies Mat. Met. Fiz.-Mekh. Polya 44 IssueID4 140–148

    Google Scholar 

  138. O. Gachkevich, B. Drobenko, and K. Kazaryan, “Mathematical simulation of thermomechanical processes in conducting axially symmetric bodies under electromagnetic loadings,” Mashynoznavstvo, No. 4, 3–7 (2003).

  139. I. I. Kifer (1969) Testing of Ferromagnetic Materials Gosénergoizdat Moscow

    Google Scholar 

  140. Ya. I. Burak, A. R. Gachkevich, and R. F. Terletskii, “Thermomechanics of bodies with low conductivity in external quasistationary electromagnetic fields,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 7, 38–41 (1989).

  141. R. F. Terletskii (1988) Thermostressed State of Bodies with Low Conductivity under the Action of Electromagnetic Radiation Candidate-Degree Thesis (Physical and Mathematical Sciences) Lvov

    Google Scholar 

  142. R. F. Terlets’kyi, “Mathematical simulation of thermomechanical processes in bodies with low conductivity in an external quasistationary electromagnetic field,” Mat. Met. Fiz.-Mekh. Polya, Issue 36, 34–38 (1992).

  143. A. G. Blokh Ya. A. Zhuravlev L. N. Ryzhkov (1991) Radiation Heat Exchange. A Handbook énergoatomizdat Moscow

    Google Scholar 

  144. R. Siegel J. R. Howell (1972) Thermal Radiation Heat Transfer McGraw-Hill New York

    Google Scholar 

  145. N. A. Rubtsov (1984) Radiation Heat Exchange in Continua Nauka Novosibirsk

    Google Scholar 

  146. Ya. I. Burak O. R. Hachkevych R. F. Terlets’kyi (1990) ArticleTitleThermomechanics of bodies with low conductivity under the action of electromagnetic radiation of infrared range Dop. Akad. Nauk Ukr. RSR, Ser. A 6 39–43

    Google Scholar 

  147. A. R. Gachkevich and R. F. Terletskii, “Temperature fields and stresses in a dielectric elastic layer subjected to the action of a stationary electromagnetic field,” Mat. Met. Fiz.-Mekh. Polya, Issue 14, 37–43 (1981).

    Google Scholar 

  148. B. S. Malkiel’, A. R. Gachkevich, Yu. R. Sosnovyi, and R. F. Terletskii, “Temperature fields and stresses in a system of plane-parallel layers under heating by electromagnetic radiation,” Mat. Met. Fiz.-Mekh. Polya, Issue 28, 21–26 (1988).

    Google Scholar 

  149. T. C. Guo W. W. Guo L. E. Larsen (1985) ArticleTitleMicrowave induced thermoelastic processes in dielectrics-theory and experiment Int. J. Infrared Millim. Wave 6 405–422

    Google Scholar 

  150. R. B. Hetnarski F. Bolt ParticleDe (1990) ArticleTitleThermal stresses due to laser radiation. Part 1: Heat conduction J. Therm. Stres. 15 331–333

    Google Scholar 

  151. N. A. Rubtsov E. B. Timmerman (1992) ArticleTitleThermoelastic processes in semitransparent material under the condition of interaction between thermal and strain fields Numer. Heat Transf. 21 249–260

    Google Scholar 

  152. N. P. Glukhanov I. G. Fedorova (1972) High-Frequency Heating of Dielectric Materials in Machine Building Mashinostroenie Leningrad

    Google Scholar 

  153. B. A. Grigor’ev (1974) Pulse Heating by Radiation Nauka Moscow

    Google Scholar 

  154. A. C. Metaxas R. J. Meredith (1983) Industrial Microwave Heating Peter Peregrinus London

    Google Scholar 

  155. C. Truesdell (1957) ArticleTitleSulle basi della termomeccanica Rend. Fis. Acc. Lincei 8 33–38

    Google Scholar 

  156. A. E. Green P. M. Naghdi (1967) ArticleTitleA theory of mixtures Arch. Rat. Mech. Anal. 24 243–263

    Google Scholar 

  157. I. Müller (1973) ArticleTitleA new approach to thermodynamics of simple mixtures Z. Naturforsch., A 28 IssueID11 1801–1813

    Google Scholar 

  158. R. J. Atkin R. E. Craine (1976) ArticleTitleContinuum theories of mixtures. Applications J. Inst. Math. Appl. 17 153–207

    Google Scholar 

  159. R. J. Atkin R. E. Craine (1976) ArticleTitleContinuum theories of mixtures. Basic theory and historical development J. Mech. Appl. Math. 29 209–214

    Google Scholar 

  160. R. M. Bowen (1976) NoChapterTitle A. C. Eringen (Eds) Theory of Mixtures SeriesTitleContinuum Physics NumberInSeriesIII Academic Press New York

    Google Scholar 

  161. R. I. Nigmatulin (1978) Foundations of Mechanics of Heterogeneous Media Nauka Moscow

    Google Scholar 

  162. J. C. Slattery (1972) Momentum, Energy, and Mass Transfer in Continua McGraw-Hill New York

    Google Scholar 

  163. Ya. Ya. Rushchitskii (1991) Elements of the Theory of Mixtures Naukova Dumka Kiev

    Google Scholar 

  164. Ya. S. Podstrigach, “Diffusion theory of inelasticity of metals,” Prikl. Mekh. Tekh. Fiz., No. 2, 67–72 (1965).

  165. Ya. S. Podstrigach V. S. Pavlina (1965) ArticleTitleDiffusion equations of thermodynamic processes in an n-component solid solution Fiz.-Khim. Mekh. Mater. 1 IssueID4 383–389

    Google Scholar 

  166. B. Ya. Lyubov (1981) Diffusion Processes in Inhomogeneous Solids Nauka Moscow

    Google Scholar 

  167. V. S. Eremeev (1984) Diffusion and Stresses énergoatomizdat Moscow

    Google Scholar 

  168. Ya. S. Podstrigach, Ya. I. Burak, B. P. Galapats, and B. M. Gnidets, “Original equations of the theory of deformation of conducting solid solutions,” Mat. Met. Fiz.-Mekh. Polya, Issue 1, 22–29 (1975).

  169. Ya. I. Burak B. P. Galapats E. Ya. Chaplya (1980) ArticleTitleDeformation of conducting bodies with regard for heterodiffusion of charged foreign particles Fiz.-Khim. Mekh. Mater. 16 IssueID5 8–14

    Google Scholar 

  170. Ya. I. Burak, B. P. Galapats, E. Ya. Chaplya, “Original equations of the process of deformation of conducting solid solutions with regard for various ways of diffusion of foreign particles,” Mat. Met. Fiz.-Mekh. Polya, No. 11, 60–66 (1980).

  171. W. Nowacki Z. S. Olesiak (1991) Thermodyfuzja w Ciałach Stałych PWN Warsaw

    Google Scholar 

  172. K. P. Gurov (1982) Phenomenological Thermodynamics of Irreversible Processes Nauka Moscow

    Google Scholar 

  173. S. R. Groot Particlede P. Mazur (1962) Non-Equilibrium Thermodynamics North-Holland Amsterdam

    Google Scholar 

  174. N. Petrov A. Mikhailova V. Dzhupanov (1978) ArticleTitleThermodynamic model of a deformable semiconductor Teor. Pril. Mekh. (Sofia) 9 IssueID1 42–46

    Google Scholar 

  175. H. G. Lorenzi H. F. Tiersten (1975) ArticleTitleOn the interaction of the electromagnetic field with heat conducting deformable semiconductors J. Math. Phys. 16 IssueID4 938–957

    Google Scholar 

  176. A. Lidiard (1957) Ionic Conductivity of Crystals Springer Berlin

    Google Scholar 

  177. M. É. Borisova S. N. Koikov (1979) Physics of Dielectrics Leningrad University Leningrad

    Google Scholar 

  178. Yu. V. Kornyushin (1981) Transport Phenomena in Real Crystals in External Fields Naukova Dumka Kiev

    Google Scholar 

  179. P. P. Kuz’menko (1983) Electrotransfer, Heat Transfer, and Diffusion in Metals Vyshcha Shkola Kiev

    Google Scholar 

  180. J. Stefaniak (1982) ArticleTitleThe effect of an electromagnetic field on thermodiffusion in an isotropic medium Polish Academy of Sciences Press, Ser. Mechanika i Budownictwo 9 1–32

    Google Scholar 

  181. W. Nowacki (1971) ArticleTitleCertain problems of the thermodiffusion in solids Arch. Mekh. 23 IssueID6 731–755

    Google Scholar 

  182. H. Parcus (1972) Magneto-Thermoelasticity Springer New York

    Google Scholar 

  183. A. R. Gachkevich V. M. Golubets B. I. Chornyi O. N. Makarenko (1988) ArticleTitleMechanothermodiffusion processes in a near-surface layer of a plate in applying an eutectic coating Fiz.-Khim. Mekh. Mater. 24 IssueID2 12–17

    Google Scholar 

  184. B. Maruszewski (1986) Termodynamiczne Podstawy Magnetotermodyfuzji i Elektrotermodyfuzji w Ośrodku Ciągłym. Rozprawy Pol. Poznańska Poznań

    Google Scholar 

  185. B. Maruszewski (1987) ArticleTitleEvolution equations of thermodiffusion in paramagnetics Int. J. Eng. Sci. 25 145–149

    Google Scholar 

  186. M. T. Solodyak (2000) ArticleTitleThermomechanodiffusion processes in conducting bodies in an external magnetic field periodic in time Fiz.-Khim. Mekh. Mater. 36 IssueID5 91–98

    Google Scholar 

  187. M. T. Solodyak (2000) ArticleTitleThermodynamic potentials for multicomponent solid solutions. I Mat. Met. Fiz.-Mekh. Polya 43 IssueID1 173–179

    Google Scholar 

  188. M. T. Solodyak (2000) ArticleTitleThermodynamic potentials for multicomponent solid solutions. II Mat. Met. Fiz.-Mekh. Polya 43 IssueID4 140–145

    Google Scholar 

  189. E. Budzisz R. Parosa M. Reszke (1994) Practyczne stosowanie mocy mikrofalowej w walce z wilgocia konstrukcji budowlanych Proceedings of the Conf. on the Progress in Electrical Technology (Wrocław, Poland, 1994) Politechnika Wrocławska Wrocław 90–93

    Google Scholar 

  190. O. R. Hachkevych Yu. R. Sosnovyi R. F. Terlets’kyi (1994) ArticleTitleSome problems of vacuum technologies of production of black-and-white and color picture tubes Vopr. Atom. Nauk. Tekh. Ser. Yader.-Fiz. Issled. (Teor. Eksp.) 27 IssueID1 47–50

    Google Scholar 

  191. O. R. Hachkevych Yu. R. Sosnovyi R. F. Terlets’kyi (1995) ArticleTitleProcesses of heat and mass transfer in the case of technological destruction of organic films on screens of vacuum-tube devices Proceedings of the Ukrainian Vacuum Society 1 313–317

    Google Scholar 

  192. O. R. Hachkevych M. H. Hachkevych Yu. R. Sosnovyi R. F. Terlets’kyi (1995) ArticleTitleOptimization of modes of thermal treatment of vacuum-tube devices using electromagnetic radiation Proceedings of the Ukrainian Vacuum Society 1 317–320

    Google Scholar 

  193. P. Zielonka E. Gierlik M. Matejak K. Dołowy (1997) ArticleTitleThe comparison of experimental and theoretical temperature distribution during microwave wood heating Holz. als Roh-und Werkstoff 55 395–398

    Google Scholar 

  194. S. F. Budz’, O. R. Hachkevych, Yu. R. Sosnovyi, and R. F. Terlets’kyi, A Method for Thermal Vacuum Treatment of Vacuum-Tube Devices [in Ukrainian], Patent of the Ukraine No. 45183A of 15.03.2002, Inventor’s Certificate 200106014, Solution of 21.11.2001, Published 15.03.2002, Bulletin No. 3.

  195. S. F. Budz’, O. R. Hachkevych, Yu. R. Sosnovyi, and R. F. Terlets’kyi, A Method for Thermal Vacuum Treatment of Color Electron-Beam Tubes [in Ukrainian], Patent of the Ukraine No. 53029A of 15.01.2003, Inventor’s Certificate 200202018, Solution of 08.02.2002, Published 15.01.2003, Bulletin No. 1.

  196. J. -J. Chen J. -D. Lin (2000) ArticleTitleThermocapillary effect on drying of polymer solution under nonuniform radiant heating Int. J. Heat Mass Transf. 43 2155–2175

    Google Scholar 

  197. M. Dedic M. Zlatanovic (2001) ArticleTitleSome aspects and comparisons of microwave drying of beech (Fagus moesiaca) and fir wood (Abies alba) Holz. als Roh-und Werkstoff 59 246–249

    Google Scholar 

  198. J. Y. Jeon H. Y. Kim (2000) ArticleTitleMicrowave irradiation effects on diffusion of organic molecules in polymer Eur. Polym. J. 36 IssueID5 895–899

    Google Scholar 

  199. V. V. Levdansky H. Y. Kim H. C. Kim J. Smolik P. Moravec (2001) ArticleTitleEffect of electromagnetic fields on transfer processes in heterogeneous systems Int. J. Heat Mass Transf. 44 IssueID5 1065–1071

    Google Scholar 

  200. T. D. Dzhafarov (1991) Radiation-Stimulated Diffusion in Semiconductors énergoizdat Moscow

    Google Scholar 

  201. A. F. Lubchenko V. N. Pavlovich (1976) ArticleTitleLaser stimulation of light interstitial diffusion in semiconductors and insulators Phys. Stat. Solidi 78 IssueID2 k97–k101

    Google Scholar 

  202. V. N. Pavlovich (1983) ArticleTitlePhotostimulated diffusion of light substitutional impurities in semiconductors and insulators Phys. Stat. Solidi B116 IssueID1 k9–k14

    Google Scholar 

  203. Yu. A. Kapustin B. M. Kolokol’nikov A. A. Sveshnikov (1990) ArticleTitlePhotostimulated diffusion of gold in silicon under pulse photon treatment Fiz. Tekh. Poluprovodn. 24 IssueID2 318–322

    Google Scholar 

  204. T. Wagner M. Fruman V. Suskova (1991) ArticleTitlePhotoenhanced dissolution and lateral diffusion of Ag in amorphous As-S layers J. Non-Cryst. Solids 128 IssueID2 197–207

    Google Scholar 

  205. A. Felts (1983) Amorphe und Glasartige Anorganische Festkörper Akademie Berlin

    Google Scholar 

  206. F. Lancon L. Billard W. Chambron A. Chamberod (1985) ArticleTitleSimulation of interstitial diffusion in an amorphous structure J. Phys. F, Metal. Phys. 15 IssueID7 1485–1496

    Google Scholar 

  207. V. N. Belousov A. K. Balan A. K. Mikitaev (1989) ArticleTitleTemperature dependence of parameters of gas permeability of polysulfone Vysokomol. Soed. B 31 IssueID8 604–607

    Google Scholar 

  208. D. K. Elfresh D. G. Howwit (1990) ArticleTitleA structure based model for diffusion in glass and the determination of diffusion constants in silica J. Non-Cryst. Solids 124 IssueID2–3 174–180

    Google Scholar 

  209. A. I. Mikhailov S. I. Kuzina (1990) ArticleTitleKinetic inhomogeneity of diffusion and solubility of gases in polymers at low temperature Eur. Polym. J. 26 IssueID1 105–116

    Google Scholar 

  210. J. W. Haus K. W. Kehr J. W. Lyklema (1992) ArticleTitleDiffusion in disordered medium Phys. Rev. B, Condens. Matter. 25 IssueID4 2905–2907

    Google Scholar 

  211. M. I. Heggie R. Jones C. D. Latham et al. (1992) ArticleTitleMolecular diffusion of oxygen and water in crystalline and amorphous silica Phyl. Mag. B 65 IssueID3 463–471

    Google Scholar 

  212. J. A. Horas J. P. Toso (1992) ArticleTitleDiffusion in glassy polymers: a model using the homogenization method and the effective medium theory J. Polym. Sci. B 30 IssueID2 127–131

    Google Scholar 

  213. J. Todd (1955) ArticleTitleOutgassing of glass J. Appl. Phys. 26 1238–1242

    Google Scholar 

  214. A. G. Revesz H. A. Schaeffer (1982) ArticleTitleThe mechanism of oxygen diffusion in vitreous SiO2 J. Electrochem. Soc. 129 IssueID2 357–361

    Google Scholar 

  215. M. Tomozawa S. Ito J. Molinelli (1984) ArticleTitleHygroscopicity of glasses with high water content J. Non-Cryst. Solids 64 IssueID1–2 269–278

    Google Scholar 

  216. J. Kirchhof P. Kleinert W. Radloff E. Below (1987) ArticleTitleDiffusion of processes in lightguide materials. The diffusion of OH in silica glass at high temperature Phys. Stat. Solidi A101 IssueID2 391–401

    Google Scholar 

  217. H. Tomozawa M. Tomozawa (1989) ArticleTitleDiffusion of water into a borosilicate glass J. Non-Cryst. Solids 109 IssueID2–3 311–317

    Google Scholar 

  218. O. R. Hachkevych T. L. Kurnyts’kyi R. F. Terlets’kyi (1997) ArticleTitleDiffusion of a gas admixture in a semitransparent solid due to the action of electromagnetic radiation of infrared range Mat. Met. Fiz.-Mekh. Polya 40 IssueID2 122–129

    Google Scholar 

  219. O. R. Hachkevych, T. L. Kurnyts’kyi, Yu. R. Sosnovyi, and R. F. Terlets’kyi, “Mathematical simulation of processes of heat and mass transfer in glass bodies under their treatment by thermal infrared radiation with the aim of degassing,” in: Vopr. Atom. Nauk. Tekh., Ser. Vak., Chist. Mater., Issue 4(5), 5(6), Sverkhprovod. (1998), pp. 45–47.

  220. O. R. Hachkevych T. L. Kurnyts’kyi R. F. Terlets’kyi (2001) ArticleTitleMathematical simulation of photostimulated diffusion of admixtures in partially transparent solids Mat. Met. Fiz.-Mekh. Polya 44 IssueID3 107–119

    Google Scholar 

  221. A. Gachkevich T. Kournyts’kyi R. Terletskii (2001) ArticleTitlePhotostimulated molecular gas admixture diffusion in semitransparent amorphous solid Int. Comm. Heat Mass Transf. 28 IssueID3 399–410

    Google Scholar 

  222. A. R. Gachkevich T. L. Kurnitskii R. F. Terletskii (2002) ArticleTitleStressed state in glass bodies in the process of their degassing using heating by infrared radiation Prikl. Mekh. Tekh. Fiz. 43 IssueID2 155–165

    Google Scholar 

  223. A. Gachkevich T. Kournyts’kyi R. Terletskii (2002) ArticleTitleInvestigation of molecular gas admixture diffusion, heat transfer and stress state in amorphous solid subjected to thermal infrared radiation Int. J. Eng. Sci. 40 829–857

    Google Scholar 

  224. O. R. Hachkevych R. F. Terlets’kyi (2003) ArticleTitleMathematical simulation of mechanothermodiffusion processes in partially transparent deformable solids with gas admixtures under conditions of electromagnetic radiation of visible range Mat. Met. Fiz.-Mekh. Polya 46 IssueID1 151–164

    Google Scholar 

  225. T. Kournyts’kyi S. Matysiak A. Gachkevich (2004) ArticleTitleEffect of laser radiation upon heat and mass transfer in two-component elastic semitransparent layer Int. J. Heat Mass Transf. 47 977–985

    Google Scholar 

  226. G. A. Abil’sintov (Eds) (1991) Technological Lasers. A Handbook Mashinostroenie Moscow

    Google Scholar 

  227. O. R. Hachkevych T. L. Kurnyts’kyi R. F. Terlets’kyi (1998) ArticleTitleMechanothermodiffusion processes in a semitransparent solid layer under the action of thermal infrared radiation Mat. Met. Fiz.-Mekh. Polya 41 IssueID3 121–131

    Google Scholar 

  228. O. R. Hachkevych T. L. Kurnyts’kyi R. F. Terlets’kyi (1999) ArticleTitleThermomechanical behavior of a layer with gas admixtures under the action of thermal infrared radiation Mat. Met. Fiz.-Mekh. Polya 42 IssueID2 141–146

    Google Scholar 

  229. T. Kournyts’kyi S. Matysiak R. Terletskii (2003) ArticleTitleHeat and mass transfer in two-layer elastic composite subjected to thermal infrared radiation Int. J. Eng. Sci. 41 IssueID17 1951–1964

    Google Scholar 

  230. O. R. Hachkevych, T. L. Kurnyts’kyi, and R. F. Terlets’kyi, “A model of thermomechanics of bodies of low conductivity in quasistationary electromagnetic fields of radio and infrared ranges,” Visn. Lviv Univ., Ser. Mekh.-Mat., Issue 57, 56–59 (2000).

  231. R. F. Terlets’kyi (2001) ArticleTitleSimulation of the thermomechanical behavior of multicomponent deformable solids of low conductivity under the action of electromagnetic radiation. Part 1. Balance relations of mechanics and the second law of thermodynamics Mat. Met. Fiz.-Mekh. Polya 45 IssueID2 81–91

    Google Scholar 

  232. R. F. Terlets’kyi (2002) ArticleTitleSimulation of the thermomechanical behavior of multicomponent deformable solids of low conductivity under the action of electromagnetic radiation. Part 2. Statistical description of factors of action of an electromagnetic field on multicomponent bodies Mat. Met. Fiz.-Mekh. Polya 45 IssueID3 155–168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 40, No. 3, pp. 19–37, May–June, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hachkevych, O.R., Terlets’kyi, R.F. Models of thermomechanics of magnetizable and polarizable conducting deformable solids. Mater Sci 40, 320–336 (2004). https://doi.org/10.1007/s11003-005-0035-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-005-0035-8

Keywords

Navigation