Skip to main content

Choices in networks: a research framework

Abstract

Networks are ubiquitous in life, structuring options available for choice and influencing their relative attractiveness. In this article, we propose an integration of network science and choice theory beyond merely incorporating metrics from one area into models of the other. We posit a typology and framework for “network-choice models” that highlight the distinct ways choices occur in and influence networked environments, as well as two specific feedback processes that guide their mutual interaction, emergent valuation and contingent options. In so doing, we discuss examples, data sources, methodological challenges, anticipated benefits, and research pathways to fully interweave network and choice models.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ascarza, E., Ebbes, P., Netzer, O., & Danielson, M. (2017). Beyond the target customer: Social effects of customer relationship management campaigns. Journal of Marketing Research, 54(3), 347–363.

    Article  Google Scholar 

  2. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  Google Scholar 

  3. Bass, F. M. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215–227.

    Article  Google Scholar 

  4. Braun, M., & Bonfrer, A. (2011). Scalable inference of customer similarities from interactions data using Dirichlet processes. Marketing Science, 30(3), 513–531.

    Article  Google Scholar 

  5. Brock, W. A., & Durlauf, S. N. (2001). Discrete choice with social interactions. The Review of Economic Studies, 68(2), 235–260.

    Article  Google Scholar 

  6. Bruch, E., & Atwell, J. (2015). Agent-based models in empirical social research. Sociological Methods & Research, 44(2), 186–221.

    Article  Google Scholar 

  7. Centola, D.(2018). How behavior spreads: the science of complex contagions. Princeton, NJ: Princeton University Press.

  8. Chae, I., Stephen, A. T., Bart, Y., & Yao, D. (2017). Spillover effects in seeded word-of-mouth marketing campaigns. Marketing Science, 36(1), 89–104.

    Article  Google Scholar 

  9. Cranmer, S. J., & Desmarais, B. A. (2011). Inferential network analysis with exponential random graph models. Political Analysis, 19(1), 66–86.

    Article  Google Scholar 

  10. Durlauf, S. N., & Ioannides, Y. M. (2010). Social interactions. Annual Review of Economics, 2(1), 451–478.

    Article  Google Scholar 

  11. Fefferman, N.H., Ng, K.L. (2007) The role of individual choice in the evolution of social complexity. Annales Zoologici Fennici. 58–69.

  12. Feit, E. M., Beltramo, M. A., & Feinberg, F. M. (2010). Reality check: combining choice experiments with market data to estimate the importance of product attributes. Management Science, 56(5), 785–800.

    Article  Google Scholar 

  13. Fewell, J. H. (2003). Social insect networks. Science, 301, 1867–1870.

    Article  Google Scholar 

  14. Gilly, M. C., Graham, J. L., Wolfinbarger, M. F., & Yale, L. J. (1998). A dyadic study of interpersonal information search. Journal of the Academy of Marketing Science, 26(2), 83–100.

    Article  Google Scholar 

  15. Hartmann, W. R., Manchanda, P., Nair, H., Bothner, M., Dodds, P., Godes, D., Hosanagar, K., & Tucker, C. (2008). Modeling social interactions: identification, empirical methods and policy implications. Marketing Letters, 19(3–4), 287–304.

    Article  Google Scholar 

  16. Hauser, J. R., Toubia, O., Evgeniou, T., Befurt, R., & Dzyabura, D. (2010). Disjunctions of conjunctions, cognitive simplicity, and consideration sets. Journal of Marketing Research, 47(3), 485–496.

    Article  Google Scholar 

  17. Hinz, O., Skiera, B., Barrot, C., & Becker, J. U. (2011). Seeding strategies for viral marketing: An empirical comparison. Journal of Marketing, 75(6), 55–71.

    Article  Google Scholar 

  18. Jackson, M. O., & Rogers, B. W. (2007). Meeting strangers and friends of friends: how random are social networks? American Economic Review, 97(3), 890–915.

    Article  Google Scholar 

  19. Kiesling, E., Günther, M., Stummer, C., & Wakolbinger, L. M. (2012). Agent-based simulation of innovation diffusion: a review. Central European Journal of Operations Research, 20(2), 183–230.

    Article  Google Scholar 

  20. Lewis, K. (2013). The limits of racial prejudice. Proceedings of the National Academy of Sciences, 110(47), 18814–18819.

    Article  Google Scholar 

  21. Louviere, J. J., Meyer, R. J., Bunch, D. S., Carson, R., Dellaert, B., Hanemann, W. M., Hensher, D., & Irwin, J. (1999). Combining sources of preference data for modeling complex decision processes. Marketing Letters, 10(3), 205–217.

    Article  Google Scholar 

  22. Louviere, J.J., Hensher, D.A., Swait, J.D. (2000). Stated choice methods: analysis and applications. Cambridge university press.

  23. Lusher, D., Koskinen, J., Robins, G. (Eds.). (2013). Exponential random graph models for social networks: Theory, methods, and applications. Cambridge University Press.

  24. Maness, M., Cirillo, C., & Dugundji, E. R. (2015). Generalized behavioral framework for choice models of social influence: Behavioral and data concerns in travel behavior. Journal of Transport Geography, 46, 137–150.

    Article  Google Scholar 

  25. Manski, C. F. (1993). Identification of endogenous social effects: the reflection problem. The Review of Economic Studies, 60(3), 531–542.

    Article  Google Scholar 

  26. Manski, C.F. (2009). Identification for prediction and decision. Harvard University Press.

  27. Martínez, V., Berzal, F., & Cubero, J. C. (2016). A survey of link prediction in complex networks. ACM Computing Surveys (CSUR), 49(4), 1–33.

    Article  Google Scholar 

  28. Newman, M. E. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.

    Article  Google Scholar 

  29. Overgoor, J., Benson, A., Ugander, J. (2019). Choosing to grow a graph: modeling network formation as discrete choice. In The World Wide Web Conference (pp. 1409-1420).

  30. Price, D.J.D.S. (1965). Networks of scientific papers. Science, 510-515.

  31. Rand, W., & Rust, R. T. (2011). Agent-based modeling in marketing: Guidelines for rigor. International Journal of Research in Marketing, 28(3), 181–193.

    Article  Google Scholar 

  32. Seshadri, A., Peysakhovich, A., Ugander, J. (2019). Discovering context effects from raw choice data. arXiv preprint arXiv:1902.03266.

  33. Shalizi, C. R., & Thomas, A. C. (2011). Homophily and contagion are generically confounded in observational social network studies. Sociological Methods & Research, 40(2), 211–239.

    Article  Google Scholar 

  34. Snijders, T. A., Van de Bunt, G. G., & Steglich, C. E. (2010). Introduction to stochastic actor-based models for network dynamics. Social Networks, 32(1), 44–60.

    Article  Google Scholar 

  35. Swait, J., Argo, J., & Li, L. (2018). Modeling simultaneous multiple goal pursuit and adaptation in consumer choice. Journal of Marketing Research, 55(3), 352–367.

    Article  Google Scholar 

  36. Wang, J., Aribarg, A., & Atchadé, Y. F. (2013). Modeling choice interdependence in a social network. Marketing Science, 32(6), 977–997.

    Article  Google Scholar 

  37. Webster, C. M., & Morrison, P. D. (2004). Network analysis in marketing. Australasian Marketing Journal (AMJ), 12(2), 8–18.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fred Feinberg or Elizabeth Bruch.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feinberg, F., Bruch, E., Braun, M. et al. Choices in networks: a research framework. Mark Lett 31, 349–359 (2020). https://doi.org/10.1007/s11002-020-09541-9

Download citation

Keywords

  • Choice models
  • Networks
  • Decision theory
  • Computational social science
  • Marketing
  • Data science