Time to pay attention to attention: using attention-based process traces to better understand consumer decision-making

Abstract

This paper examines consumers’ attention traces (e.g., sequences of eye fixations and saccades) during choice. Due to reduced equipment cost and increased ease of analysis, attention traces can reflect a more fine-grained representation of decision-making activities (e.g., formation of a consideration set, alternative evaluation, and decision strategies). Besides enabling a better understanding of actual consumer choice, attention traces support more complex models of choice, and point to the prospects of specific interventions at various stages of the choice process. We identify and discuss promising areas for future research.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    These developments coincide nicely with increased awareness by researchers that visual attention and memory cannot be equated and that better measures of attention are needed (Milosavljevic and Cerf 2008; Chandon et al. 2009; Aribarg, Pieters, and Wedel 2010; Atalay et al. 2012).

  2. 2.

    These models are built upon earlier models of perceptual decision-making, see Gold and Shadlen (2007) and Ratcliff and McKoon (2008). Due to space constraints, we focus only on accumulation models relevant to our discussion of attention.

References

  1. Ashby, N. J., Johnson, J. G., Krajbich, I., & Wedel, M. (2016). Applications and innovations of eye-movement research in judgment and decision making. Journal of Behavioral Decision Making, 29(2-3), 96–102.

    Article  Google Scholar 

  2. Atalay, A. S., Bodur, H. O., & Rasolofoarison, D. (2012). Shining in the center: Central gaze cascade effect on product choice. Journal of Consumer Research, 39(4), 848–866.

    Article  Google Scholar 

  3. Baymard Institute. 41 cart abandonment rate statistics. https://baymard.com/lists/cart-abandonment-rate. Accessed March 2020.

  4. Bhatia, S. (2013). Associations and the accumulation of preference. Psychological Review, 120(30), 522.

    Article  Google Scholar 

  5. Bhatia, S. (2017). Attention and attribute overlap in preferential choice. The Quarterly Journal of Experimental Psychology, 70(7), 1174–1196.

    Article  Google Scholar 

  6. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525.

    Article  Google Scholar 

  7. Chandon, P., Hutchinson, J. W., Bradlow, E. T., & Young, S. H. (2009). Does in-store marketing work? Effects of the number and position of shelf facings on brand attention and evaluation at the point of purchase. Journal of Marketing, 73(6), 1–17.

    Article  Google Scholar 

  8. Dhar, R., & Nowlis, S. M. (2004). To buy or not to buy: Response mode effects on consumer choice. Journal of Marketing Research, 41(November), 423–432.

    Article  Google Scholar 

  9. Diederich, A. (1997). Dynamic stochastic models for decision making under time constraints. Journal of Mathematical Psychology, 41(3), 260–274.

    Article  Google Scholar 

  10. Domingos, P. (2015). The master algorithm: How the quest for the ultimate learning machine will remake our world. Basic Books.

  11. Ericsson, K. A., & Moxley, J. H. (2019). Thinking aloud during superior performance on tasks involving decision making. In M. Schulte-Mecklenbeck, A. Kühberger, & J. G. Johnson (Eds.), A handbook of process tracing methods (2nd ed.). London: Routlege.

    Google Scholar 

  12. Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535–574.

    Article  Google Scholar 

  13. Gourville, J. T., & Soman, D. (2005). Overchoice and assortment type: When and why variety backfires. Marketing Science, 24(3), 382–395.

    Article  Google Scholar 

  14. Hui, S. K., Huang, Y., Suher, J., & Inman, J. J. (2013). Deconstructing the “first moment of truth”: Understanding unplanned consideration and purchase conversion using in-store video tracking. Journal of Marketing Research, 50(4), 445–462.

    Article  Google Scholar 

  15. Janiszewski, C. (1998). The influence of display characteristics on visual exploratory search behavior. Journal of Consumer Research, 25(3), 290–301.

    Article  Google Scholar 

  16. Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience, 13(10), 1292.

    Article  Google Scholar 

  17. Meissner, M., Pfeiffer, J., Pfeiffer, T., & Oppewal, H. (2019). Combining virtual reality and mobile eye tracking to provide a naturalistic experimental environment for shopper research. Journal of Business Research, 100, 445–458.

    Article  Google Scholar 

  18. Milosavljevic, M., & Cerf, M. (2008). First attention then intention: Insights from computational neuroscience of vision. International Journal of advertising, 27(3), 381–398.

    Article  Google Scholar 

  19. Milosavljevic, M., Navalpakkam, V., Koch, C., & Rangel, A. (2012). Relative visual saliency differences induce sizable bias in consumer choice. Journal of Consumer Psychology, 22(1), 67–74.

    Article  Google Scholar 

  20. Mormann, M., Towal, B., & Koch, C. (2015). What the eye does not admire the brain does not desire: How visual properties of product packaging affect consumer attention and choice. Working paper, Available at SSRN: https://ssrn.com/abstract=2709187.

  21. Nordfält, J. (2011). Improving the attention-capturing ability of special displays with the combination effect and the design effect. Journal of Retailing and Consumer Services, 18(3), 169–173.

    Article  Google Scholar 

  22. Novemsky, N., Dhar, R., Schwarz, N., & Simonson, I. (2007). Preference fluency in choice. Journal of Marketing Research, 44(3), 347–356.

    Article  Google Scholar 

  23. Orquin, J. L., & Mueller Loose, S. (2013). Attention and choice: A review on eye movements in decision making. Acta Psychologica, 144(1), 190–206.

    Article  Google Scholar 

  24. Pieters, R., & Warlop, L. (1999). Visual attention during brand choice: The impact of time pressure and task motivation. International Journal of Research in Marketing, 16(2), 1–16.

    Article  Google Scholar 

  25. Ratcliff, R., & McKoon, G. (2008). The drift diffusion model: Theory and data for two-choice decision tasks. Neural Computation, 20, 873–922.

    Article  Google Scholar 

  26. Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in cognitive sciences, 20(4), 260–281.

    Article  Google Scholar 

  27. Roe, R. M., Busemeyer, J. R., & Townsend, J. T. (2001). Multialternative decision field theory: A dynamic connectionst model of decision making. Psychological review, 108(2), 370–392.

    Article  Google Scholar 

  28. Russo, J. E. (2019). Eye fixations as a process trace. In M. Schulte-Mecklenbeck, A. Kuhberger, & J. G. Johnson (Eds.), A handbook of process methods for decision research (2nd ed., pp. 4–26). New York: Psychology Press.

    Chapter  Google Scholar 

  29. Russo, J. E., & Dosher, B. A. (1983). Strategies for multiattribute binary choice. Journal of Experimental Psychology: Learning, Memory and Cognition, 9, 676–696.

    Google Scholar 

  30. Russo, J. E., & Leclerc, F. (1994). An eye-fixation analysis of choice processes for consumer nondurables. Journal of Consumer Research, 21(2), 274–290.

    Article  Google Scholar 

  31. Russo, J. E., & Rosen, L. D. (1975). An eye fixation analysis of multialternative choice. Memory & Cognition, 3(3), 267–276.

    Article  Google Scholar 

  32. Streicher, M., Büttner, O., & Estes, Z. (2017). Eye buy: Attentional scope affects product choice via visual exploration. In Gneezy, A., Griskevicius, V., & Williams, P. (Eds.), NA - Advances in Consumer Research (Vol. 45, pp. 286–290). Duluth: Association for Consumer Research.

  33. Towal, R. B., Mormann, M., & Koch, C. (2013). Simultaneous modeling of visual saliency and value computation improves predictions of economic choice. Proceedings of the National Academy of Sciences, 110(40), E3858–E3867.

    Article  Google Scholar 

  34. Trueblood, J. S., Brown, S. D., & Heathcote, A. (2014). The multiattribute linear ballistic accumulator model of context effects in multialternative choice. Psychological Review, 121(2), 179–205.

    Article  Google Scholar 

  35. Turner, B. M., Schley, D. R., Muller, C., & Tsetsos, K. (2018). Competing theories of multialternative, multiattribute preferential choice. Psychological review, 125(3), 329.

    Article  Google Scholar 

  36. Wästlund, E., Shams, P., & Otterbring, T. (2018). Unsold is unseen… or is it? Examining the role of peripheral vision in the consumer choice process using eye-tracking methodology. Appetite, 120(January), 49–56.

    Article  Google Scholar 

  37. Wedel, M., & R. Pieters (2017). A review of eye-tracking research in marketing. Review of Marketing Research, Vol. 4 [N. Malhotra].

  38. Willemsen, M. C., & Johnson, E. J. (2019). Visiting the decision factory: Observing cognition with MouselabWEB and other information acquisition methods. A Handbook of Process Tracing Methods for Decision Research, 21–42.

  39. Willemsen, M. C., Böckenholt, U., & Johnson, E. J. (2011). Choice by value encoding and value construction: Processes of loss aversion. Journal of Experimental Psychology: General, 140(3), 303.

    Article  Google Scholar 

  40. Xia, L. (2010). An examination of consumer browsing behaviors. Qualitative Market Research, 13(2), 154–173.

    Article  Google Scholar 

  41. Zuo, Y. (2016). Prediction of consumer purchase behavior using Bayesian network: An operational improvement and new results based on RFID data. International Journal of Knowledge Engineering and Soft Data Paradigms, 2(5), 85–105.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Milica Mormann.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 19.6 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mormann, M., Griffiths, T., Janiszewski, C. et al. Time to pay attention to attention: using attention-based process traces to better understand consumer decision-making. Mark Lett 31, 381–392 (2020). https://doi.org/10.1007/s11002-020-09520-0

Download citation

Keywords

  • Attention
  • Choice
  • Consumer
  • Decision-making
  • Evidence accumulation models
  • Process tracing