Marketing Letters

, Volume 26, Issue 2, pp 115–125

Multiplicity of equilibria and information structures in empirical games: challenges and prospects

Session at the 9th Triennial Choice Symposium
  • Ron N. Borkovsky
  • Paul B. Ellickson
  • Brett R. Gordon
  • Victor Aguirregabiria
  • Pedro Gardete
  • Paul Grieco
  • Todd Gureckis
  • Teck-Hua Ho
  • Laurent Mathevet
  • Andrew Sweeting
Article

DOI: 10.1007/s11002-014-9308-z

Cite this article as:
Borkovsky, R.N., Ellickson, P.B., Gordon, B.R. et al. Mark Lett (2015) 26: 115. doi:10.1007/s11002-014-9308-z
  • 403 Downloads

Abstract

Empirical models of strategic games are central to much analysis in marketing and economics. However, two challenges in applying these models to real-world data are that such models often admit multiple equilibria and that they require strong informational assumptions. The first implies that the model does not make unique predictions about the data, and the second implies that results may be driven by strong a priori assumptions about the informational setup. This article summarizes recent work that seeks to address both issues and suggests some avenues for future research.

Keywords

Static discrete games Dynamic games Structural estimation Multiplicity of equilibria Information structures Learning 

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ron N. Borkovsky
    • 1
  • Paul B. Ellickson
    • 2
  • Brett R. Gordon
    • 3
  • Victor Aguirregabiria
    • 1
  • Pedro Gardete
    • 4
  • Paul Grieco
    • 5
  • Todd Gureckis
    • 6
  • Teck-Hua Ho
    • 7
  • Laurent Mathevet
    • 6
  • Andrew Sweeting
    • 8
  1. 1.University of TorontoTorontoCanada
  2. 2.University of RochesterRochesterUSA
  3. 3.Columbia Business SchoolNew YorkUSA
  4. 4.Stanford UniversityStanfordUSA
  5. 5.Pennsylvania State UniversityState CollegeUSA
  6. 6.New York UniversityNew YorkUSA
  7. 7.University of California-BerkeleyBerkeleyUSA
  8. 8.University of MarylandCollege ParkUSA

Personalised recommendations