Skip to main content

Advancing consumer neuroscience

Abstract

In the first decade of consumer neuroscience, strong progress has been made in understanding how neuroscience can inform consumer decision making. Here, we sketch the development of this discipline and compare it to that of the adjacent field of neuroeconomics. We describe three new frontiers for ongoing progress at both theoretical and applied levels. First, the field will broaden its boundaries to include genetics and molecular neuroscience, each of which will provide important new insights into individual differences in decision making. Second, recent advances in computational methods will improve the accuracy and out-of-sample generalizability of predicting decisions from brain activity. Third, sophisticated meta-analyses will help consumer neuroscientists to synthesize the growing body of knowledge, providing evidence for consistency and specificity of brain activations and their reliability as measurements of consumer behavior.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Ariely, D., & Berns, G. S. (2010). Neuromarketing: the hope and hype of neuroimaging in business. Nature Reviews Neuroscience, 11(4), 284–292.

    Article  Google Scholar 

  • Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427.

    Article  Google Scholar 

  • Bell, C. G., Walley, A. J., & Froguel, P. (2005). The genetics of human obesity. Nature Reviews Genetics, 6(3), 221–234.

    Article  Google Scholar 

  • Berns, G. S., & Moore, S. E. (2012). A neural predictor of cultural popularity. Journal of Consumer Psychology, 22(1), 154–160.

    Article  Google Scholar 

  • Bhatt, M. A., Lohrenz, T., Camerer, C. F., & Montague, P. R. (2010). Neural signatures of strategic types in a two-person bargaining game. PNAS, 107(46), 19720–19725.

    Article  Google Scholar 

  • Camerer, C., Loewenstein, G., & Prelec, D. (2005). Neuroeconomics: how neuroscience can inform economics. Journal of Economic Literature, 43(1), 9–64.

    Article  Google Scholar 

  • Carter, R. M., & Huettel, S. A. (2013). A nexus model of the temporo-parietal junction. Trends in Cognitive Sciences, 17, 328–336.

    Article  Google Scholar 

  • Cesarini, D., Dawes, C. T., Fowler, J. H., Johannesson, M., Lichtenstein, P., & Wallace, B. (2008). Heritability of cooperative behavior in the trust game. PNAS, 105(10), 3721–3726.

    Article  Google Scholar 

  • De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. J. (2006). Frames, biases, and rational decision-making in the human brain. Science, 313(5787), 684–687.

    Article  Google Scholar 

  • Ebstein, R. B., Zhong, S., et al. (2012). Genetics of social cognition in the laboratory: Definition, measurement, and association. In T. Canlin (Ed.), The Oxford handbook of molecular psychology. Oxford: Oxford University Press.

    Google Scholar 

  • Falk, E. B., Berkman, E. T., & Lieberman, M. D. (2012). From neural responses to population behavior: neural focus group predicts population-level media effects. Psychological Science, 23(5), 439–445.

    Article  Google Scholar 

  • Glimcher, P. W. (2011). Foundations of neuroeconomic analysis. New York: Oxford University Press.

    Google Scholar 

  • Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., & Taylor, J. E. (2013). Interpretable whole-brain prediction analysis with GraphNet. NeuroImage, 72, 304–321.

    Article  Google Scholar 

  • Gul, F., & Pesendorfer, W. (2008). The case for mindless economics. In A. Caplin & A. Schotter (Eds.), The foundations of positive and normative economics. Oxford: Oxford University Press.

    Google Scholar 

  • Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324, 646–648.

    Article  Google Scholar 

  • Hedgcock, W., & Rao, A. R. (2009). Trade-off aversion as an explanation for the attraction effect: a functional magnetic resonance imaging study. Journal of Marketing Research, 46, 1–13.

    Article  Google Scholar 

  • Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision-making. Science, 310(5754), 1680–1683.

    Article  Google Scholar 

  • Hsu, M., Anen, C., & Quartz, S. R. (2008). The right and the good: distributive justice and neural encoding of equity and efficiency. Science, 320(5879), 1092–1095.

    Article  Google Scholar 

  • Jensen, P. B., Jensen, L. J., & Brunak, S. (2012). Mining electronic health records: towards better research applications and clinical care. Nature Reviews Genetics, 13, 395–405.

    Article  Google Scholar 

  • Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10(12), 1625–1633.

    Article  Google Scholar 

  • Kitayama, S., & Uskul, A. K. (2011). Culture, mind, and the brain: current evidence and future directions. Annual Review of Psychology, 62, 419–449.

    Article  Google Scholar 

  • Klucharev, V., Smidts, A., & Fernández, G. (2008). Brain mechanisms of persuasion: how “expert power” modulates memory and attitudes. Social Cognitive and Affective Neuroscience, 3(4), 353–366.

    Article  Google Scholar 

  • Knafo, A., & Plomin, R. (2006). Prosocial behavior from early to middle childhood: genetic and environmental influences on stability and change. Developmental Psychology, 42(5), 771–786.

    Article  Google Scholar 

  • Knutson, B., & Karmarkar, U. (2014). Appetite, consumption, and choice in the human brain. In S. D. Preston, M. Kringelbach, & B. Knutson (Ed.), The interdisciplinary science of consumption http://mitpress.mit.edu/books/interdisciplinary-science-consumption.

  • Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural predictors of purchases. Neuron, 53(1), 147–156.

    Article  Google Scholar 

  • Levallois, C., Clithero, J. A., Wouters, P., Smidts, A., & Huettel, S. A. (2012). Translating upwards: linking the neural and social sciences via neuroeconomics. Nature Reviews. Neuroscience, 13(11), 789–797.

    Article  Google Scholar 

  • Levallois, C., Smidts, A., & Wouters, P. (2013). The neuro-turn in science and society: investigating the birth of neuromarketing through traditional and new media (2002-2008). Working paper Erasmus Center for Neuroeconomics, Erasmus University Rotterdam (43 p.).

  • Levy, D. J., & Glimcher, P. W. (2012). The root of all value: a neural common currency for choice. Current Opinion in Neurobiology, 22, 1027–1038.

    Article  Google Scholar 

  • Lieberman, M. D. (2007). Social cognitive neuroscience: a review of core processes. Annual Review of Psychology, 58, 259–289.

    Article  Google Scholar 

  • McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44(2), 379–387.

    Article  Google Scholar 

  • Montague, P. R., King-Casas, B., & Cohen, J. D. (2006). Imaging valuation models in human choice. Annual Review of Neuroscience, 29, 417–448.

    Article  Google Scholar 

  • O’Connell, L. A., & Hofmann, H. A. (2012). Evolution of a vertebrate social decision-making network. Science, 336(6085), 1154–1157.

    Article  Google Scholar 

  • Payne, J. W., Bettman, J. R., & Johnson, E. J. (1992). Behavioral decision research: a constructive processing perspective. Annual Review of Psychology, 43(1), 87–131.

    Article  Google Scholar 

  • Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: a tutorial overview. NeuroImage, 45(1), S199–S209.

    Article  Google Scholar 

  • Plassmann, H., O’Doherty, J., Shiv, B., & Rangel, A. (2008). Marketing actions can modulate neural representations of experienced pleasantness. PNAS, 105(3), 1050–1054.

    Article  Google Scholar 

  • Plassmann, H., Ramsøy, T. Z., & Milosavljevic, M. (2012). Branding the brain: a critical review and outlook. Journal of Consumer Psychology, 22(1), 18–36.

    Article  Google Scholar 

  • Plomin, R. (1990). Nature and nurture: An introduction to human behavioral genetics. Pacific Grove: Thomson Brooks/Cole Publishing Co.

    Google Scholar 

  • Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10, 59–63.

    Article  Google Scholar 

  • Rasetti, R. & Weinberger, D. R. (2011). Intermediate phenotypes in psychiatric disorders. Current Opinion in Genetics and Development 21(3), 340–348.

  • Reimann, M., Zaichkowsky, J., Neuhaus, C., Bender, T., & Weber, B. (2010). Aesthetic package design: a behavioral, neural, and psychological investigation. Journal of Consumer Psychology, 20(4), 431–441.

    Article  Google Scholar 

  • Rilling, J. K., & Sanfey, A. G. (2011). The neuroscience of social decision-making. Annual Review of Psychology, 62, 23–48.

    Article  Google Scholar 

  • Shiv, B., & Yoon, C. (2012). Integrating neurophysiological and psychological approaches: towards an advancement of brand insights. Journal of Consumer Psychology, 22(1), 3–6.

    Article  Google Scholar 

  • Shiv, B., Bechara, A., Levin, I., Alba, J. W., Bettman, J. R., Dube, L., et al. (2005). Decision neuroscience. Marketing Letters, 16(3–4), 375–386.

    Article  Google Scholar 

  • Simonson, I., & Sela, A. (2011). On the heritability of consumer decision making: an exploratory approach for studying genetic effects on judgment and choice. Journal of Consumer Research, 37(6), 951–966.

    Article  Google Scholar 

  • Stallen, M., Smidts, A., Rijpkema, M., Smit, G., Klucharev, V., & Fernández, G. (2010). Celebrities and shoes on the female brain: the neural correlates of product evaluation in the context of fame. Journal of Economic Psychology, 31(5), 802–811.

    Article  Google Scholar 

  • Venkatraman, V., Payne, J. W., Bettman, J. R., Luce, M. F., & Huettel, S. A. (2009). Separate neural mechanisms underlie choices and strategic preferences in risky decision making. (2009). Neuron, 62(4), 593–602.

    Article  Google Scholar 

  • Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8, 665–670.

    Article  Google Scholar 

  • Yoon, C., Gonzalez, R., Bechara, A., Berns, G. S., Dagher, A., Dube, L., et al. (2012). Decision neuroscience and consumer decision making. Marketing Letters, 23, 473–485.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ale Smidts or Ming Hsu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14.7 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smidts, A., Hsu, M., Sanfey, A.G. et al. Advancing consumer neuroscience. Mark Lett 25, 257–267 (2014). https://doi.org/10.1007/s11002-014-9306-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11002-014-9306-1

Keywords

  • Consumer neuroscience
  • Neuroeconomics
  • Social neuroscience
  • Genes
  • Machine learning
  • Meta-analysis