Marketing Letters

, Volume 25, Issue 3, pp 257–267 | Cite as

Advancing consumer neuroscience

  • Ale Smidts
  • Ming Hsu
  • Alan G. Sanfey
  • Maarten A. S. Boksem
  • Richard B. Ebstein
  • Scott A. Huettel
  • Joe W. Kable
  • Uma R. Karmarkar
  • Shinobu Kitayama
  • Brian Knutson
  • Israel Liberzon
  • Terry Lohrenz
  • Mirre Stallen
  • Carolyn Yoon
Article

Abstract

In the first decade of consumer neuroscience, strong progress has been made in understanding how neuroscience can inform consumer decision making. Here, we sketch the development of this discipline and compare it to that of the adjacent field of neuroeconomics. We describe three new frontiers for ongoing progress at both theoretical and applied levels. First, the field will broaden its boundaries to include genetics and molecular neuroscience, each of which will provide important new insights into individual differences in decision making. Second, recent advances in computational methods will improve the accuracy and out-of-sample generalizability of predicting decisions from brain activity. Third, sophisticated meta-analyses will help consumer neuroscientists to synthesize the growing body of knowledge, providing evidence for consistency and specificity of brain activations and their reliability as measurements of consumer behavior.

Keywords

Consumer neuroscience Neuroeconomics Social neuroscience Genes Machine learning Meta-analysis 

Supplementary material

11002_2014_9306_MOESM1_ESM.docx (15 kb)
ESM 1(DOCX 14.7 kb)

References

  1. Ariely, D., & Berns, G. S. (2010). Neuromarketing: the hope and hype of neuroimaging in business. Nature Reviews Neuroscience, 11(4), 284–292.CrossRefGoogle Scholar
  2. Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427.CrossRefGoogle Scholar
  3. Bell, C. G., Walley, A. J., & Froguel, P. (2005). The genetics of human obesity. Nature Reviews Genetics, 6(3), 221–234.CrossRefGoogle Scholar
  4. Berns, G. S., & Moore, S. E. (2012). A neural predictor of cultural popularity. Journal of Consumer Psychology, 22(1), 154–160.CrossRefGoogle Scholar
  5. Bhatt, M. A., Lohrenz, T., Camerer, C. F., & Montague, P. R. (2010). Neural signatures of strategic types in a two-person bargaining game. PNAS, 107(46), 19720–19725.CrossRefGoogle Scholar
  6. Camerer, C., Loewenstein, G., & Prelec, D. (2005). Neuroeconomics: how neuroscience can inform economics. Journal of Economic Literature, 43(1), 9–64.CrossRefGoogle Scholar
  7. Carter, R. M., & Huettel, S. A. (2013). A nexus model of the temporo-parietal junction. Trends in Cognitive Sciences, 17, 328–336.CrossRefGoogle Scholar
  8. Cesarini, D., Dawes, C. T., Fowler, J. H., Johannesson, M., Lichtenstein, P., & Wallace, B. (2008). Heritability of cooperative behavior in the trust game. PNAS, 105(10), 3721–3726.CrossRefGoogle Scholar
  9. De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. J. (2006). Frames, biases, and rational decision-making in the human brain. Science, 313(5787), 684–687.CrossRefGoogle Scholar
  10. Ebstein, R. B., Zhong, S., et al. (2012). Genetics of social cognition in the laboratory: Definition, measurement, and association. In T. Canlin (Ed.), The Oxford handbook of molecular psychology. Oxford: Oxford University Press.Google Scholar
  11. Falk, E. B., Berkman, E. T., & Lieberman, M. D. (2012). From neural responses to population behavior: neural focus group predicts population-level media effects. Psychological Science, 23(5), 439–445.CrossRefGoogle Scholar
  12. Glimcher, P. W. (2011). Foundations of neuroeconomic analysis. New York: Oxford University Press.Google Scholar
  13. Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., & Taylor, J. E. (2013). Interpretable whole-brain prediction analysis with GraphNet. NeuroImage, 72, 304–321.CrossRefGoogle Scholar
  14. Gul, F., & Pesendorfer, W. (2008). The case for mindless economics. In A. Caplin & A. Schotter (Eds.), The foundations of positive and normative economics. Oxford: Oxford University Press.Google Scholar
  15. Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324, 646–648.CrossRefGoogle Scholar
  16. Hedgcock, W., & Rao, A. R. (2009). Trade-off aversion as an explanation for the attraction effect: a functional magnetic resonance imaging study. Journal of Marketing Research, 46, 1–13.CrossRefGoogle Scholar
  17. Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision-making. Science, 310(5754), 1680–1683.CrossRefGoogle Scholar
  18. Hsu, M., Anen, C., & Quartz, S. R. (2008). The right and the good: distributive justice and neural encoding of equity and efficiency. Science, 320(5879), 1092–1095.CrossRefGoogle Scholar
  19. Jensen, P. B., Jensen, L. J., & Brunak, S. (2012). Mining electronic health records: towards better research applications and clinical care. Nature Reviews Genetics, 13, 395–405.CrossRefGoogle Scholar
  20. Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10(12), 1625–1633.CrossRefGoogle Scholar
  21. Kitayama, S., & Uskul, A. K. (2011). Culture, mind, and the brain: current evidence and future directions. Annual Review of Psychology, 62, 419–449.CrossRefGoogle Scholar
  22. Klucharev, V., Smidts, A., & Fernández, G. (2008). Brain mechanisms of persuasion: how “expert power” modulates memory and attitudes. Social Cognitive and Affective Neuroscience, 3(4), 353–366.CrossRefGoogle Scholar
  23. Knafo, A., & Plomin, R. (2006). Prosocial behavior from early to middle childhood: genetic and environmental influences on stability and change. Developmental Psychology, 42(5), 771–786.CrossRefGoogle Scholar
  24. Knutson, B., & Karmarkar, U. (2014). Appetite, consumption, and choice in the human brain. In S. D. Preston, M. Kringelbach, & B. Knutson (Ed.), The interdisciplinary science of consumption http://mitpress.mit.edu/books/interdisciplinary-science-consumption.
  25. Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural predictors of purchases. Neuron, 53(1), 147–156.CrossRefGoogle Scholar
  26. Levallois, C., Clithero, J. A., Wouters, P., Smidts, A., & Huettel, S. A. (2012). Translating upwards: linking the neural and social sciences via neuroeconomics. Nature Reviews. Neuroscience, 13(11), 789–797.CrossRefGoogle Scholar
  27. Levallois, C., Smidts, A., & Wouters, P. (2013). The neuro-turn in science and society: investigating the birth of neuromarketing through traditional and new media (2002-2008). Working paper Erasmus Center for Neuroeconomics, Erasmus University Rotterdam (43 p.).Google Scholar
  28. Levy, D. J., & Glimcher, P. W. (2012). The root of all value: a neural common currency for choice. Current Opinion in Neurobiology, 22, 1027–1038.CrossRefGoogle Scholar
  29. Lieberman, M. D. (2007). Social cognitive neuroscience: a review of core processes. Annual Review of Psychology, 58, 259–289.CrossRefGoogle Scholar
  30. McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44(2), 379–387.CrossRefGoogle Scholar
  31. Montague, P. R., King-Casas, B., & Cohen, J. D. (2006). Imaging valuation models in human choice. Annual Review of Neuroscience, 29, 417–448.CrossRefGoogle Scholar
  32. O’Connell, L. A., & Hofmann, H. A. (2012). Evolution of a vertebrate social decision-making network. Science, 336(6085), 1154–1157.CrossRefGoogle Scholar
  33. Payne, J. W., Bettman, J. R., & Johnson, E. J. (1992). Behavioral decision research: a constructive processing perspective. Annual Review of Psychology, 43(1), 87–131.CrossRefGoogle Scholar
  34. Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: a tutorial overview. NeuroImage, 45(1), S199–S209.CrossRefGoogle Scholar
  35. Plassmann, H., O’Doherty, J., Shiv, B., & Rangel, A. (2008). Marketing actions can modulate neural representations of experienced pleasantness. PNAS, 105(3), 1050–1054.CrossRefGoogle Scholar
  36. Plassmann, H., Ramsøy, T. Z., & Milosavljevic, M. (2012). Branding the brain: a critical review and outlook. Journal of Consumer Psychology, 22(1), 18–36.CrossRefGoogle Scholar
  37. Plomin, R. (1990). Nature and nurture: An introduction to human behavioral genetics. Pacific Grove: Thomson Brooks/Cole Publishing Co.Google Scholar
  38. Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10, 59–63.CrossRefGoogle Scholar
  39. Rasetti, R. & Weinberger, D. R. (2011). Intermediate phenotypes in psychiatric disorders. Current Opinion in Genetics and Development 21(3), 340–348.Google Scholar
  40. Reimann, M., Zaichkowsky, J., Neuhaus, C., Bender, T., & Weber, B. (2010). Aesthetic package design: a behavioral, neural, and psychological investigation. Journal of Consumer Psychology, 20(4), 431–441.CrossRefGoogle Scholar
  41. Rilling, J. K., & Sanfey, A. G. (2011). The neuroscience of social decision-making. Annual Review of Psychology, 62, 23–48.CrossRefGoogle Scholar
  42. Shiv, B., & Yoon, C. (2012). Integrating neurophysiological and psychological approaches: towards an advancement of brand insights. Journal of Consumer Psychology, 22(1), 3–6.CrossRefGoogle Scholar
  43. Shiv, B., Bechara, A., Levin, I., Alba, J. W., Bettman, J. R., Dube, L., et al. (2005). Decision neuroscience. Marketing Letters, 16(3–4), 375–386.CrossRefGoogle Scholar
  44. Simonson, I., & Sela, A. (2011). On the heritability of consumer decision making: an exploratory approach for studying genetic effects on judgment and choice. Journal of Consumer Research, 37(6), 951–966.CrossRefGoogle Scholar
  45. Stallen, M., Smidts, A., Rijpkema, M., Smit, G., Klucharev, V., & Fernández, G. (2010). Celebrities and shoes on the female brain: the neural correlates of product evaluation in the context of fame. Journal of Economic Psychology, 31(5), 802–811.CrossRefGoogle Scholar
  46. Venkatraman, V., Payne, J. W., Bettman, J. R., Luce, M. F., & Huettel, S. A. (2009). Separate neural mechanisms underlie choices and strategic preferences in risky decision making. (2009). Neuron, 62(4), 593–602.CrossRefGoogle Scholar
  47. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8, 665–670.CrossRefGoogle Scholar
  48. Yoon, C., Gonzalez, R., Bechara, A., Berns, G. S., Dagher, A., Dube, L., et al. (2012). Decision neuroscience and consumer decision making. Marketing Letters, 23, 473–485.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ale Smidts
    • 1
  • Ming Hsu
    • 2
  • Alan G. Sanfey
    • 3
  • Maarten A. S. Boksem
    • 1
  • Richard B. Ebstein
    • 4
  • Scott A. Huettel
    • 5
  • Joe W. Kable
    • 6
  • Uma R. Karmarkar
    • 7
  • Shinobu Kitayama
    • 8
  • Brian Knutson
    • 9
  • Israel Liberzon
    • 8
  • Terry Lohrenz
    • 10
  • Mirre Stallen
    • 3
  • Carolyn Yoon
    • 11
  1. 1.Rotterdam School of ManagementErasmus UniversityRotterdamThe Netherlands
  2. 2.Haas School of BusinessUniversity of California, BerkeleyBerkeleyUSA
  3. 3.Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
  4. 4.National University of SingaporeSingaporeSingapore
  5. 5.Duke UniversityDurhamUSA
  6. 6.University of PennsylvaniaPhiladelphiaUSA
  7. 7.Harvard Business SchoolBostonUSA
  8. 8.University of MichiganAnn ArborUSA
  9. 9.Stanford UniversityStanfordUSA
  10. 10.Virginia Tech Carilion Research InstituteRoanokeUSA
  11. 11.Stephen M. Ross School of BusinessUniversity of MichiganAnn ArborUSA

Personalised recommendations