Marketing Letters

, Volume 26, Issue 4, pp 489–500 | Cite as

Consumer satisfaction versus churn in the case of upgrades of 3G to 4G cell networks

  • Steven D’Alessandro
  • Lester Johnson
  • David Gray
  • Leanne Carter


The current use of 3G technologies has created significant demands for capacity, such as cell TV, and this needs to be balanced with the capital constraints of many firms. Providers face price pressures on margins and the need to update cell networks to 4G in the post-GFC era where capital is scarce. Understanding consumer behavior in this area by use of simulations may be a time- and cost-efficient method, but how accurate is it? This study demonstrates that the use of a simple, agent-based model can lead to accurate initial prediction of parameters of satisfaction with a cell phone provider, and provides a basis of understanding factors of cell phone subscriber choice in the context of the introduction of new technology.


Simulations Netlogo Mobile phone networks 3G versus 4G choice Provider choice models Triangulation of models 


  1. Ahn, H. J. (2010). Evaluating customer aid functions of online stores with agent-based models of customer behavior and evolution strategy. Journal Information Sciences, 180(9), 1555–1570.CrossRefGoogle Scholar
  2. Aydin, S., & Özer, G. (2005). The analysis of antecedents of customer loyalty in the Turkish mobile telecommunication market. European Journal of Marketing, 39(7/8), 910–925.CrossRefGoogle Scholar
  3. Bansal, H. S., & Taylor, S. F. (1999). The service provider switching model (SPSM). Journal of Service Research, 2(2), 200–218.CrossRefGoogle Scholar
  4. Ben-Akiva, M., McFadden, D., Abe, M., Böckenholt, U., Bolduc, D., Gopinath, D., Morikawa, T., Ramaswamy, V., Rao, V., Revelt, D., & Steinberg, D. (1997). Modeling methods for discrete choice analysis. Marketing Letters, 8(3), 273–286.CrossRefGoogle Scholar
  5. Bohlmann, J. D., Calantone, R. J., & Meng, Z. (2010). The effects of market network heterogeneity on innovation diffusion: an agent-based modeling approach. Journal of Product Innovation Management, 27(5), 741–760.CrossRefGoogle Scholar
  6. Chuang, Y.-F. (2011). Pull-and-suck effects in Taiwan mobile phone subscribers switching intentions. Telecommunications Policy, 35(2), 128–140.CrossRefGoogle Scholar
  7. Colgate, M., & Hedge, R. (2001). An investigation into the switching process in retail banking services. The International Journal of Bank Marketing, 19(5), 201–212.CrossRefGoogle Scholar
  8. Colgate, M., & Lang, B. (2001). Switching barriers in consumer markets: an investigation of the financial services industry. Journal of Consumer Marketing, 18(4), 332–347.CrossRefGoogle Scholar
  9. Deng, Z., Lu, Y., Wei, K., & Zhang, J. (2010). Understanding customer satisfaction and loyalty: an empirical study of mobile instant messages in China. International Journal of Information Management, 30(4), 289–300.CrossRefGoogle Scholar
  10. Dierkes, T., Bichler, M., & Krishnan, R. (2011). Estimating the effect of word of mouth on churn and cross-buying in the mobile phone market with Markov logic networks. Decision Support Systems, 51(3), 361–371.CrossRefGoogle Scholar
  11. Dodds, W. (1973). An application of the Bass model in long-term new product forecasting. Journal of Market Research, 10(3), 308–311.MathSciNetCrossRefGoogle Scholar
  12. Feldman, J. M., & Lynch, J. G. (1988). Self-generated validity and other effects of measurement on belief, attitude, intention, and behavior. Journal of Applied Psychology, 73(3), 421–435.CrossRefGoogle Scholar
  13. Garcia, R. (2005). Uses of agent-based modeling in innovation/new product development research. Journal of Product Innovation Management, 22(5), 380–398.CrossRefGoogle Scholar
  14. Garcia, R., Rummel, P., & Hauser, J. (2007). Validating agent-based marketing models through conjoint analysis. Journal of Business Research, 60(8), 848–857.CrossRefGoogle Scholar
  15. Goldenberg, J., Mazursky, D., & Solomon, S. (1999). Toward identifying the inventive templates of new products: a channeled ideation approach. Journal of Marketing Research, 36(2), 200–210.CrossRefGoogle Scholar
  16. Goldenberg, J., Libai, B., & Muller, E. (2002). Riding the saddle: how cross-market communications can create a major slump in sales. Journal of Marketing, 66(2), 1–16.CrossRefGoogle Scholar
  17. Goldenberg, J., Han, S., Lehmann, D. R., & Hong, J. W. (2009). The role of hubs in the adoption process. Journal of Marketing, 73(2), 1–13.CrossRefGoogle Scholar
  18. Goode, M., Davies, F., Moutinho, L., & Jamal, A. (2005). Determining customer satisfaction from mobile phones: a neural network approach. Journal of Marketing Management, 21(7/8), 755–778.CrossRefGoogle Scholar
  19. Grahn, G. L. (1969). NBD model of repeat-purchase loyalty: an empirical investigation. Journal of Marketing Research, 6(1), 72–78.CrossRefGoogle Scholar
  20. Iyengar, R., Jedidi, K., & Kohli, R. (2008). A conjoint approach to multipart pricing. Journal of Marketing Management, 45(2), 195–210.Google Scholar
  21. Keaveney, S. M. (1995). Customer switching behavior in service industries: an exploratory study. Journal of Marketing, 59(2), 71–82.CrossRefGoogle Scholar
  22. Labeaga-Azcona, J. M., Lado-Cousté, N., & Martos-Partal, M. (2010). The double jeopardy loyalty effect using discrete choice models. International Journal of Market Research, 52(5), 633–652.CrossRefGoogle Scholar
  23. Lee, S.-G., Yu, M., Yang, C., & Kim, C. (2011). A model for analyzing churn effect in saturated markets. Industrial Management & Data Systems, 111(7), 1024–1038.CrossRefGoogle Scholar
  24. Lees, G., Garland, R., & Wright, M. (2007). Switching banks: old bank gone but not forgotten. Journal of Financial Services Marketing, 12(2), 146–156.CrossRefGoogle Scholar
  25. Levesque, T. J., & McDougall, G. H. (1993). Managing customer satisfaction: the nature of service problems and customer exit, voice and loyalty. Asia Pacific Journal of Quality Management, 2(2), 40–58.Google Scholar
  26. Ma, S., & Büschken, J. (2011). Counting your customers from an ‘always a share’ perspective. Marketing Letters, 22(3), 243–257.CrossRefGoogle Scholar
  27. Mah, A. (2004). Product innovation case study: ‘3’—a Hutchinson brand. The Marketing Review, 4(2), 157–188.CrossRefGoogle Scholar
  28. McIntyre, S. H., & Miller, C. M. (1992). Social utility and fashion behavior. Marketing Letters, 3(4), 371–382.CrossRefGoogle Scholar
  29. Neslin, S. A., & Schneider Stone, L. G. (1996). Consumer inventory sensitivity and the postpromotion dip. Marketing Letters, 7(1), 77–94.CrossRefGoogle Scholar
  30. Poynter, K. (2006). Vodafone: ‘stop the clock’. Marketing, 22–22.Google Scholar
  31. Rand, W., & Rust, R. (2011). Agent-based modeling in marketing: guidelines for rigor. International Journal of Market Research, 28(3), 181–193.CrossRefGoogle Scholar
  32. Ross, W. T., Moore, M. C., & Staelin, R. (2000). Recurrent marketing decisions: decision complexity, decision focus, and firm performance. Marketing Letters, 11(4), 283–297.CrossRefGoogle Scholar
  33. Turnbull, P., Leek, S., & Ying, G. (2000). Customer confusion: the mobile phone market. Journal of Marketing Management, 16(1–3), 143–163.CrossRefGoogle Scholar
  34. Wahab, S., Al-Momani, K., & Nor-Azila, M. (2010). The relationship between e-service quality and ease of use on customer relationship management (CRM) performance: an empirical investigation in Jordan mobile phone services. Journal of Internet Banking and Commerce, 15(1), 1–15.Google Scholar
  35. Wedel, M., Kamakura, W., Arora, N., Bemmaor, A., Jeongwen, C., Elrod, T., Johnson, R., Lenk, P., Neslin, S., & Poulsen, C. (1999). Discrete and continuous representations of unobserved heterogeneity in choice modeling. Marketing Letters, 10(3), 219–232.CrossRefGoogle Scholar
  36. Winer, R. S. (1986). A reference price model of brand choice for frequently purchased products. Journal of Consumer Research, 13(2), 250–256.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Steven D’Alessandro
    • 1
  • Lester Johnson
    • 1
    • 2
  • David Gray
    • 3
  • Leanne Carter
    • 3
  1. 1.School of Management and MarketingCharles Sturt UniversityBathurstAustralia
  2. 2.Melbourne Business SchoolCharles Sturt UniversityBathurstAustralia
  3. 3.Department of Marketing and ManagementMacquarie UniversityNorth RydeAustralia

Personalised recommendations