Appendix
Proof of Proposition 1
From Proposition 3 in Balachander et al. (2009), we have the total profit with K slots asFootnote 12
$$ \pi_K^S = \sum\nolimits_{{k = 1}}^K {\sum\nolimits_{{j = k}}^k {{E_N}\left( {{v_{{j + 1}}}} \right)\left( {{\alpha_j} - {\alpha_{{j + 1}}}} \right) = \sum\limits_{{j = 1}}^K {j{E_N}\left( {{v_{{j + 1}}}} \right)\left( {{\alpha_j} - {\alpha_{{j + 1}}}} \right)} } } $$
(A.1)
Then,
$$ \pi_K^S = \sum\limits_{{j = 1}}^{{K - 1}} {j{E_N}\left( {{v_{{j + 1}}}} \right)\left( {{\alpha_j} - {\alpha_{{j + 1}}}} \right) + K{E_N}\left( {{v_{{K + 1}}}} \right){\alpha_K}} $$
(A.2)
$$ \pi_{{K + 1}}^S = \sum\limits_{{j = 1}}^{{K - 1}} {j{E_N}\left( {{v_{{j + 1}}}} \right)\left( {{\alpha_j} - {\alpha_{{j + 1}}}} \right) + K{E_N}\left( {{v_{{K + 1}}}} \right)\left( {{\alpha_K} - {\alpha_{{K + 1}}}} \right) + \left( {K + 1} \right){E_N}\left( {{v_{{K + 2}}}} \right)} $$
(A.3)
To compute the marginal profit we subtract (A.2) from (A.3).
$$ \pi_{{K + 1}}^S - \pi_K^S = - {\text{K}}{{\text{E}}_N}\left( {{v_{{K + 1}}}} \right){\alpha_{{K + 1}}} + \left( {K + 1} \right){E_N}\left( {{v_{{K + 2}}}} \right){\alpha_{{K + 1}}} $$
(A.4)
If Eq. (A.4) is positive, then a search engine has an incentive to increase the number of slot to K + 1. In other words, the marginal profit condition becomes
$$ \left( {K + 1} \right){E_N}\left( {{v_{{K + 2}}}} \right) - {\text{K}}{{\text{E}}_N}\left( {{v_{{K + 1}}}} \right) \geqslant 0 $$
(A.5)
Using property of order statistics, the expected valuation of K + 1th and K + 2th advertisers is given as follows:
$$ {E_N}\left( {{v_{{K + 1}}}} \right) = \int_0^{\infty } {\left\{ {v\frac{{N!}}{{\left( {N - K - 1} \right)!K!}}f(v){{\left[ {F(v)} \right]}^{{N - K - 1}}}{{\left[ {1 - F(v)} \right]}^K}} \right\}dv.} $$
(A.6)
$$ {E_N}\left( {{v_{{K + 2}}}} \right) = \int_0^{\infty } {\left\{ {v\frac{{N!}}{{\left( {N - K - 2} \right)!\left( {K + 1} \right)!}}f(v){{\left[ {F(v)} \right]}^{{N - K - 2}}}{{\left[ {1 - F(v)} \right]}^{{K + 1}}}} \right\}dv} $$
(A.7)
Then, integrating E
N
(v
K + 2) by parts we have
$$ \matrix{ {{E_N}\left( {{v_{{K + 2}}}} \right)} \hfill \\ { = \frac{{N!}}{{\left( {N - K - 1} \right)!\left( {K + 1} \right)!}}\left\{ { - \int_0^{\infty } {{{\left[ {F(v)} \right]}^{{N - K - 1}}}{{\left[ {1 - F(v)} \right]}^{{K + 1}}}dv - \left( {K + 1} \right)\int_0^{\infty } {vf(v)F{{(v)}^{{N - K - 1}}}{{\left[ {1 - F(v)} \right]}^K}dv} } } \right\}} \hfill \\ { = - \frac{{N!}}{{\left( {N - K - 1} \right)!\left( {K + 1} \right)!}}\int_0^{\infty } {{{\left[ {F(v)} \right]}^{{N - K - 1}}}{{\left[ {1 - F(v)} \right]}^{{K + 1}}}dv + {E_N}\left( {{v_{{K + 1}}}} \right)} } \hfill \\ }<!end array> $$
(A.8)
Plugging (A.8) and (A.6) into (A.5) gives (A.9).
$$ \int_0^{\infty } {\left\{ {\frac{{N!}}{{\left( {N - K - 1} \right)!K!}}f(v){{\left[ {F(v)} \right]}^{{N - K - 1}}}{{\left[ {1 - F(v)} \right]}^K}\left[ {v - \frac{{1 - F(v)}}{{f(v)}}} \right]} \right\}dv \geqslant 0} $$
(A.9)
Let \( J(v) = v - \frac{{1 - F(v)}}{{f(v)}} \), then (A.9) becomes E
N
(J(v
K + 1)).
Proof of Proposition 3(a)
For the uniform valuation distribution, Eq. (A.5) reduces to the following:
$$ \frac{{N!}}{{\left( {N - K - 2} \right)!K!}}\int_0^{{{v^{{\max }}}}} {\left[ {{v^{{N - K - 1}}} - {{\left( {1 - v} \right)}^{{K + 1}}}} \right]dv - \frac{{N!}}{{\left( {N - K - 1} \right)!\left( {K - 1} \right)!}}\int_0^{{{v^{{\max }}}}} {\left[ {{v^{{N - K}}} - {{\left( {1 - v} \right)}^K}} \right]dv \geqslant 0} } $$
(A.10)
By letting \( \int_0^{{{v^{{\max }}}}} {\left[ {{v^{{N - K - 1}}} - {{\left( {1 - v} \right)}^{{K + 1}}}} \right]dv} \) be A and \( \int_0^{{{v^{{\max }}}}} {\left[ {{v^{{N - K}}} - {{\left( {1 - v} \right)}^K}} \right]dv} \) be B, (A.10) reduces to
$$ \frac{{N!}}{{\left( {N - K - 2} \right)!K!}}\left\{ A \right\} - \frac{{N!}}{{\left( {N - K - 1} \right)!\left( {K - 1} \right)!}}\left\{ B \right\} \geqslant 0 $$
Through integration by parts, B becomes
$$ \int_0^{{{v^{{\max }}}}} {\frac{{{v^{{N - K}}}{{\left( {1 - v} \right)}^{{K + 1}}}}}{{K + 1}}dv + \frac{{N - K}}{{K + 1}}\int_0^{{{v^{{\max }}}}} {\left[ {{v^{{N - K - 1}}} - {{\left( {1 - v} \right)}^{{K + 1}}}} \right]dv} } $$
(A.11)
Since the first term in (A.11) reduces to zero, (A.11) reduces to the following:
$$ \frac{{N - K}}{{K + 1}}\int_0^{{{v^{{\max }}}}} {\left[ {{v^{{N - K - 1}}} - {{\left( {1 - v} \right)}^{{K + 1}}}} \right]dv} $$
(A.12)
Plugging (A.12) into (A.10), (A.10) becomes
$$ \left[ {\frac{{N!}}{{\left( {N - K - 2} \right)!K!}} - \frac{{N!\left( {N - K} \right)}}{{\left( {N - K - 1} \right)!\left( {K - 1} \right)!\left( {K + 1} \right)}}} \right]\int_0^{{{v^{{\max }}}}} {\left[ {{v^{{N - K - 1}}} - {{\left( {1 - v} \right)}^{{K + 1}}}} \right]dv \geqslant 0} $$
(A.13)
Inequality (A.13) further reduces to \( \left[ {\frac{{N!\left( {N - 2K - 1} \right)}}{{\left( {N - K - 1} \right)!\left( {K + 1} \right)!}}} \right]\int_0^{{{v^{{\max }}}}} {\left[ {{v^{{N - K - 1}}} - {{\left( {1 - v} \right)}^{{K + 1}}}} \right]dv \geqslant 0} \), and by simplifying this we can show that this inequality holds if \( K \leqslant \frac{{N - 1}}{2} \). Since the number of slots is an integer, we assume that a search engine increases K until the marginal profit becomes zero or negative. This implies \( {K^{ * }} = \left\lceil {\frac{{N - 1}}{2}} \right\rceil \)
.
Proof of Proposition 3(b)
Let the CDF of the Pareto distribution be \( F\left( {v;a,\beta } \right) = 1 - {\left( {\frac{a}{v}} \right)^{\beta }},v > a \), where a is the lower bound of v, a > 0, and β > 0, which is the shape parameter.
According to the well-known representation theorem of Renyi (1953) and Huang (1975),
$$ {v_K} = a\prod\nolimits_{{i = k}}^N {{\eta_i}} $$
(A.14)
Where η
i
,…,η
N
are independent Pareto variables, with η
i
∼ F(1,iβ). Because the mean of F(1,iβ) is \( \frac{{a\beta }}{{\beta - 1}} \) for β > 1and η
i
∼ F(1,iβ), we can easily obtain that (Arnold et al. 1992)
$$ {E_N}\left( {{v_K}} \right) = \frac{{a\Gamma \left( {N + 1} \right)\Gamma \left( {K - 1/\beta } \right)}}{{\Gamma (K)\Gamma \left( {N + 1 - 1/\beta } \right)}} \;{\text{for}}\;\beta \; > \;1 $$
(A.15)
Using (A.15), the marginal profit condition, (A.5) reduces to
$$ \Gamma \left( {K + 2 - 1/\beta } \right) - K\Gamma \left( {K + 1 - 1/\beta } \right) = \left[ {K + 1 - 1/\beta } \right]\Gamma \left( {K + 1 - 1/\beta } \right) \geqslant 0 $$
(A.16)
Because 1 − 1/β > 0, we have
$$ \matrix{ {\Gamma \left( {K + 1 - 1/\beta } \right) = \left( {K - 1/\beta } \right)\left( {K - 1/\beta - 1} \right) \ldots \left( {1 - 1/\beta } \right)\Gamma \left( {1 - 1/\beta } \right)} \hfill \\ { = \left( {1 - 1/\beta } \right)\Gamma \left( {1 - 1/\beta } \right)\sum\nolimits_{{r = 1}}^{{K - 1}} {\left( {K + 1 - 1/\beta - r} \right)} = \left( {K \frac{{ - 1}}{2} } \right)\left( {\beta \left( {K + 2} \right) - 2} \right) \geqslant 0} \hfill \\ }<!end array> $$
(A.17)
(A.17) implies that the marginal profit condition is positive for all K because β > 1. Therefore, K* = N.
Proof of Proposition 3(c)
According to Arnold et al. (1992), the (ξ − 1)th moment of v
i:N
, the ith order statistic of N valuations, is given by
$$ \mu_{{i:N}}^{{\xi - 1}} = B{\left( {i,N - i + 1} \right)^{{ - 1}}}\int_0^{\infty } {{v^{{\xi - 1}}}{{\left( {1 - {e^{{ - v}}}} \right)}^{{N - i}}}{{\left( {{e^{{ - v}}}} \right)}^i}dv} $$
(A.18)
Integrating this by parts with v
ξ−1
dv and (1 − e
−v)N−i (e
−v)i, we have
$$ \matrix{ {\mu_{{i:N}}^{{\xi - 1}}} \hfill \\ { = B{{\left( {i,N - i + 1} \right)}^{{ - 1}}}\left[ { - \int_0^{\infty } {\frac{{{v^{\xi }}}}{\xi }\left( {N - i} \right){{\left( {1 - {e^{{ - v}}}} \right)}^{{N - i - 1}}}{{\left( {{e^{{ - v}}}} \right)}^{{i + 1}}}dv + \int_0^{\infty } {\frac{{{v^{\xi }}}}{\xi }\left( {N - i} \right){{\left( {1 - {e^{{ - v}}}} \right)}^{{N - i}}}{{\left( {{e^{{ - v}}}} \right)}^i}(i)dv} } } \right]} \hfill \\ { = - \frac{{N!(i)}}{{\left( {N - i - 1} \right)!(i)!\xi }}\int_0^{\infty } {{v^{\xi }}{{\left( {1 - {e^{{ - v}}}} \right)}^{{N - i - 1}}}{{\left( {{e^{{ - v}}}} \right)}^{{i + 1}}}dv} + \frac{{N!(i)}}{{\left( {N - 1} \right)!\left( {i - 1} \right)!\xi }}\int_0^{\infty } {{v^{\xi }}{{\left( {1 - {e^{{ - v}}}} \right)}^{{N - i}}}{{\left( {{e^{{ - v}}}} \right)}^i}dv} } \hfill \\ { = - \mu_{{i + 1:N}}^{\xi }\frac{i}{\xi } + \mu_{{i + 1:N}}^{\xi }\frac{i}{\xi }} \hfill \\ }<!end array> $$
(A.19)
Thus, \( \mu_{{i:N}}^{\xi } = - \mu_{{i + 1:N}}^{\xi } + \frac{{\xi \mu_{{i:N}}^{{\xi - 1}}}}{i} \). Using this last identity and recursively plugging the E
N
(v
i
), i = 1,…,N, we obtain
$$ {E_N}\left( {{v_K}} \right) = \sum\nolimits_{{r = K}}^N {K\frac{1}{r}} $$
(A.20)
Thus, the marginal profit condition becomes
$$ \left( {K + 1} \right){E_N}\left( {{v_{{K + 2}}}} \right) - K{E_N}\left( {{v_{{K + 1}}}} \right) = \left( {K + 1} \right)\sum\nolimits_{{r = K + 2}}^N {\frac{1}{r} - K} \sum\nolimits_{{r = K + 1}}^N {\frac{1}{r} = K} \left\lceil { - \frac{1}{{K + 1}}} \right\rceil + \sum\nolimits_{{r = K + 2}}^N {\frac{1}{r} \geqslant 0} $$
(A.21)
Proof of Proposition 4(a)
From Proposition 3 in Balachander et al. (2009), we have the total profit with K slots as
$$ \pi_K^S = \sum\nolimits_{{j = 1}}^K {j{E_N}\left( {{v_{{j + 1}}}} \right)\left( {\alpha_j^K - \alpha_{{j + 1}}^K} \right) = \sum\nolimits_{{j = 1}}^K {\alpha_j^K\left[ {j{E_N}\left( {{v_{{j + 1}}}} \right) - \left( {j - 1} \right){E_N}\left( {{v_j}} \right)} \right]} } . $$
(A.22)
Then, we have
$$ \matrix{ {\pi_{{K + 1}}^S - \pi_K^S = \sum\nolimits_{{j = 1}}^K {\alpha_j^{{K + 1}}\left[ {j{E_N}\left( {{v_{{j + 1}}}} \right) - \left( {j - 1} \right){E_N}\left( {{v_j}} \right)} \right]} - \sum\nolimits_{{j = 1}}^K {\alpha_j^K\left[ {j{E_N}\left( {{v_{{j + 1}}}} \right) - \left( {j - 1} \right){E_N}\left( {{v_j}} \right)} \right]} } \hfill \\ { + \alpha_{{K + 1}}^{{K + 1}}\left[ {\left( {K + 1} \right){E_N}\left( {{v_{{K + 2}}}} \right) - (K){E_N}\left( {{v_{{K + 1}}}} \right)} \right]} \hfill \\ { = \sum\nolimits_{{j = 1}}^K {\left( {\alpha_j^{{K + 1}} - \alpha_j^K} \right)\left[ {j{E_N}\left( {{v_{{j + 1}}}} \right) - \left( {j - 1} \right){E_N}\left( {{v_j}} \right)} \right] + \alpha_{{K + 1}}^{{K + 1}}\left[ {\left( {K + 1} \right){E_N}\left( {{v_{{K + 2}}}} \right) - (K){E_N}\left( {{v_{{K + 1}}}} \right)} \right]} } \hfill \\ }<!end array> $$
(A.23)
Using the relation in Proposition 1 that \( \left( {K + 1} \right){E_N}\left( {{v_{{K + 2}}}} \right) - K{E_N}\left( {{v_{{K + 1}}}} \right) = {E_N}\left( {J\left( {{v_{{K + 1}}}} \right)} \right) \), Eq. (A.23) becomes
$$ \matrix{ {\pi_{{K + 1}}^S - \pi_K^S = \sum\nolimits_{{j = 1}}^K {\left\{ {\left[ {\alpha_j^{{K + 1}} - \alpha_j^K} \right]{E_N}\left( {J\left( {{v_j}} \right)} \right)} \right\} + \alpha_{{K + 1}}^{{K + 1}}\left[ {{E_N}\left( {J\left( {{v_{{k + 1}}}} \right)} \right)} \right]} } \hfill \\ { = \sum\nolimits_{{j = 1}}^K {\left( {\alpha_j^{{K + 1}} - \alpha_j^K} \right){E_N}\left( {J\left( {{v_j}} \right)} \right) + \left[ {{Z^{{K + 1}}} - {Z^K} + \sum\nolimits_{{j = 1}}^K {\left( {\alpha_j^K - \alpha_j^{{K + 1}}} \right)} } \right]{E_N}\left( {J\left( {{v_{{K + 1}}}} \right)} \right)} } \hfill \\ { = - \sum\nolimits_{{j = 1}}^K {\left( {\alpha_j^{{K + 1}} - \alpha_j^K} \right)\left[ {{E_N}\left( {J\left( {{v_j}} \right)} \right) - {E_N}\left( {J\left( {{v_{{K + 1}}}} \right)} \right)} \right] + \left( {{Z^{{K + 1}}} - {Z^K}} \right){E_N}\left( {J\left( {{v_{{K + 1}}}} \right)} \right)} } \hfill \\ }<!end array> $$
(A.24)
Since the search engine would add slots when (A.24) is non-negative, the condition to profitably add a slot is
$$ \left( {{Z^{{K + 1}}} - {Z^K}} \right){E_N}\left( {J\left( {{v_{{K + 1}}}} \right)} \right) \geqslant \sum\nolimits_{{j = 1}}^K {\left( {\alpha_j^K - \alpha_j^{{K + 1}}} \right)\left[ {{E_N}\left( {J\left( {{v_i}} \right)} \right) - {E_N}\left( {J\left( {{v_{{K + 1}}}} \right)} \right)} \right]} . $$
(A.25)
Proof of Proposition 4(b-2)
When \( {Z^{{K + 1}}} = {Z^K},\forall K \), the left-hand side term in (A.25) is zero. However, the right-hand side term is always non-negative because, \( {v_j} > {v_{{j + 1}}},\forall j \) in equilibrium, J(v) is monotonically increasing in v, and \( \alpha_j^K > \alpha_j^{{K + 1}} \). Therefore K* = 1. When \( {Z^K} > {Z^{{K + 1}}},\forall K \), the optimal number of slots is one, because the left-hand side of (A.25) is negative for all K ≥ 1 while the right-hand side is non-negative.
Proof of Proposition 4(b-3)
Note that \( \alpha_j^K < \alpha_j^{{K + 1}} \) implies \( {Z^K} < {Z^{{K + 1}}} \). Thus, the left-hand side of (A.25) is always positive. However, the right-hand side is always negative because \( {E_N}\left( {J\left( {{v_j}} \right)} \right) \geqslant {E_N}\left( {J\left( {{v_{{K + 1}}}} \right)} \right) \) given that \( {v_j} > {v_{{j + 1}}},\forall j \) in equilibrium and J(v) is monotonically increasing in v. Thus, K* = N.