Skip to main content
Log in

Marine CSEM 3D modeling with a downhole dipole source for natural gas hydrate production monitoring

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

Concerning the geological and environmental risks of marine natural gas hydrate (NGH) exploitation, the NGH production status needs to be monitored by detecting the changes in reservoir physical parameters. Since solid hydrate dissociation and free gas extraction contribute to the resistivity changes of the reservoir layer, the marine controlled-source electromagnetic (CSEM) method could be potentially applied for NGH production monitoring. Considering the commercial exploitation of NGH in the future using horizontal wells in the South China Sea, we construct a 3D numerical model with three reservoir layers to investigate the feasibility of marine CSEM with a vertical downhole dipole source for NGH production monitoring. Based on the relative anomalies of modeled electric field responses at seafloor receivers before and after NGH production, it is found that (1) the transmitter should be optimally placed just below the hydrate layer and downward crossing the mixing and free-gas layers, (2) the absolute value and gradient of the relative anomaly reflect the range change of production zone, characterizing the monitoring performance of CSEM system, and (3) the marine CSEM is feasible for monitoring not only the long-term commercial NGH production but also the short-term trial production process as the case of China’s second NGH production test at Shenhu area. The study results suggest that the marine CSEM with a vertical source has good sensitivity for the electric field of short source-receiver offsets and an optimistic application prospect for the monitoring purpose of NGH productions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Archer D, Buffett B, Brovkin V (2008) Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc Natl Acad Sci 106(49):20596–20601

    Article  Google Scholar 

  • Asaue H, Koike K, Yoshinaga T, Goto TN, Yoshida H (2021) Development and application of a variable-frequency-based electric sounding system for increasing the accuracy of aquifer detection. Nat Resour Res 30(4):3017–3034

    Article  Google Scholar 

  • Bakr SA, Mannseth T (2009) Feasibility of simplified integral equation modeling of low-frequency marine CSEM with a resistive target. Geophysics 74(5):F107–F117

    Article  Google Scholar 

  • Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4(4):1206–1215

    Article  Google Scholar 

  • Butler SL, Zhang Z (2016) Forward modeling of geophysical electromagnetic methods using Comsol. Comput Geosci 87:1–10

    Article  Google Scholar 

  • Cai HZ, Hu XY, Li JH, Endo M, Xiong B (2017) Parallelized 3D CSEM modeling using edge-based finite element with total field formulation and unstructured mesh. Comput Geosci 99:125–134

    Article  Google Scholar 

  • Chave AD, Cox CS (1982) Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans: 1. Forward problem and model study. J Geophys Res 87(B7):5327–5338

    Article  Google Scholar 

  • Chong ZR, Yang SHB, Babu P, Linga P, Li XS (2016) Review of natural gas hydrates as an energy resource: prospects and challenges. Appl Energy 162:1633–1652

    Article  Google Scholar 

  • COMSOL (2020) Multiphysics 5.6 user’s guide. COMSOL Inc, Stockholm

    Google Scholar 

  • Constable S (2010) Ten years of marine CSEM for hydrocarbon exploration. Geophysics 75(5):67A-75A

    Article  Google Scholar 

  • Constable S, Srnka LJ (2007) An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics 72(2):A3–A12

    Article  Google Scholar 

  • Constable S, Weiss CJ (2006) Mapping thin resistors and hydrocarbons with marine EM methods: insights from 1D modeling. Geophysics 71(2):G43–G51

    Article  Google Scholar 

  • Cox C (1980) Electromagnetic induction in the oceans and inferences on the constitution of the earth. Geophys Surv 4(1–2):137–156

    Article  Google Scholar 

  • Edwards RN (2005) Marine controlled source electromagnetics: principles, methodologies, future commercial applications. Surv Geophys 26(6):675–700

    Article  Google Scholar 

  • Edwards RN (1997) On the resource evaluation of marine gas hydrate deposits using sea-floor transient electric dipole-dipole methods. Geophysics 62(1):63–74

    Article  Google Scholar 

  • Goswami BK, Weitemeyer KA, Minshull TA, Sinha MC, Westbrook GK, Chabert A, Henstock TJ, Ker S (2015) A joint electromagnetic and seismic study of an active pockmark within the hydrate stability field at the Vestnesa Ridge, West Svalbard margin. J Geophys Res 120(10):6797–6822

    Article  Google Scholar 

  • Goto TN, Kasaya T, MacHiyama H, Takagi R, Matsumoto R, Okuda Y, Satoh M, Watanabe T, Seama N, Mikada H, Sanada Y, Kinoshita M (2008) A marine deep-towed DC resistivity survey in a methane hydrate area, Japnn Sea. Explor Geophys 39(1):52–59

    Article  Google Scholar 

  • Gribenko A, Zhdanov M (2007) Rigorous 3D inversion of marine CSEM data based on the integral equation method. Geophysics 72(2):A73–A84

    Article  Google Scholar 

  • Harinarayana T, Hardage B, Orange A (2012) Controlled-source marine electromagnetic 2-D modeling gas hydrate studies. Mar Geophys Res 33(3):239–250

    Article  Google Scholar 

  • Helwig SL, Wood W, Gloux B (2019) Vertical-vertical controlled-source electromagnetic instrumentation and acquisition. Geophys Prospect 67(6):1582–1594

    Article  Google Scholar 

  • Hornbach MJ, Holbrook WS, Gorman AR, Hackwith KL, Lizarralde D, Pecher I (2003) Direct seismic detection of methane hydrate on the Blake Ridge. Geophysics 68(1):92–100

    Article  Google Scholar 

  • Jing J, Chen K, Deng M, Zhao Q, Luo X, Tu G, Wang M (2019) A marine controlled-source electromagnetic survey to detect gas hydrates in the Qiongdongnan Basin, South China Sea. J Asian Earth Sci 171:201–212

    Article  Google Scholar 

  • Kohnke C, Liu L, Streich R, Swidinsky A (2018) A method of moments approach to model the electromagnetic response of multiple steel casings in a layered earth. Geophysics 83(2):B81–B96

    Article  Google Scholar 

  • Kong FN, Johnstad SE, Røsten T, Westerdahl H (2008) A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media. Geophysics 73(1):F9–F19

    Article  Google Scholar 

  • Kwon T, Cho G (2012) Submarine slope failure primed and triggered by bottom water warming in oceanic hydrate-bearing deposits. Energies 5(8):2849–2873

    Article  Google Scholar 

  • Liang PF, Di QY, Zhen QH, Wang R, Fayemi O, Fu CM, Lei D, An ZG, Fan JB, Ma ZJ, Yang LY (2020) Electromagnetic telemetry simulation in vertical drillings. Geophysics 85(6):E207–E219

    Article  Google Scholar 

  • Lien M, Mannseth T (2008) Sensitivity study of marine CSEM data for reservoir production monitoring. Geophysics 73(4):F151–F163

    Article  Google Scholar 

  • Malovichko M, Tarasov AV, Yavich N, Zhdanov MS (2019) Mineral exploration with 3-D controlled-source electromagnetic method: a synthetic study of Sukhoi Log gold deposit. Geophys J Int 219(3):1698–1716

    Article  Google Scholar 

  • Mittet R (2010) High-order finite-difference simulations of marine CSEM surveys using a correspondence principle for wave and diffusion fields. Geophysics 75(1):F33–F50

    Article  Google Scholar 

  • Mountjoy JJ, Pecher I, Henrys S, Crutchley G, Barnes PM, Plaza-Faverola A (2014) Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand. Geochem Geophys Geosyst 15(11):4137–4156

    Article  Google Scholar 

  • Oh S, Noh K, Seol SJ, Byun J, Yi M (2016) Interpretation of controlled-source electromagnetic data from iron ores under rough topography. J Appl Geophys 124:106–116

    Article  Google Scholar 

  • Omisore BO, Sheng J, Fayemi O (2020) Numerical modelling of borehole-surface CSEM response of onshore gas hydrate deposit with higher order finite difference method. J Appl Geophys 174:103968

    Article  Google Scholar 

  • Orange A, Key K, Constable S (2009) The feasibility of reservoir monitoring using time-lapse marine CSEM. Geophysics 74(2):F21–F29

    Article  Google Scholar 

  • Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates. Rev Geophys 55(1):126–168

    Article  Google Scholar 

  • Scholl C, Edwards RN (2007) Marine downhole to seafloor dipole-dipole electromagnetic methods and the resolution of resistive targets. Geophysics 72(2):A39–A49

    Article  Google Scholar 

  • Schwalenberg K, Rippe D, Koch S, Scholl C (2017) Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand. J Geophys Res 122(5):3334–3350

    Article  Google Scholar 

  • Shipley TH (1979) Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG Bull 63(12):2204–2213

    Google Scholar 

  • Sloan ED, Koh CA (2007) Clathrate hydrates of natural gases, 3rd edn. The CRC Press, Florida

    Book  Google Scholar 

  • Streich R (2009) 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data; direct solution and optimization for high accuracy. Geophysics 74(5):F95–F105

    Article  Google Scholar 

  • Wang XJ, Wu SG, Liu XW, Yang SX, Guo YQ, Li QP (2010) Estimation of gas hydrates resources based on well log data and seismic data in Shenhua area. Prog Geophys 25(4):1288–1297 (in Chinese)

    Google Scholar 

  • Weitemeyer KA, Constable SC, Key KW, Behrens JP (2006) First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon. Geophys Res Lett 33(3):L3304

    Article  Google Scholar 

  • Weitemeyer KA, Constable S, Tréhu AM (2011) A marine electromagnetic survey to detect gas hydrate at Hydrate Ridge, Oregon. Geophys J Int 187(1):45–62

    Article  Google Scholar 

  • Ye JL, Qin XW, Xie WW, Lu HL, Ma BJ, Qiu HJ, Liang JQ, Lu JA, Kuang ZG, Lu C, Liang QY, Wei SP, Yu YJ, Liu CS, Li B, Shen K, Shi HX, Lu QP, Li J, Kou BB, Song G, Li B, Zhang HE, Lu HF, Ma C, Dong YF, Bian H (2020) The second natural gas hydrate production test in the South China Sea. China Geol 3(2):197–209

    Article  Google Scholar 

  • Yuan J, Edwards RN (2000) The assessment of marine gas hydrates through electrical remote sounding: hydrate without a BSR? Geophys Res Lett 27(16):2397–2400

    Article  Google Scholar 

  • Yuguo L, Kerry K (2007) 2D marine controlled-source electromagnetic modeling: Part 1—an adaptive finite-element algorithm. Geophysics 72(2):A51–A62

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 42174133, 41676032) and China Geological Survey (Grand No. DD20190234). The authors thank the reviewers and editors for their valuable comments that greatly improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., He, T., Li, Y. et al. Marine CSEM 3D modeling with a downhole dipole source for natural gas hydrate production monitoring. Mar Geophys Res 43, 43 (2022). https://doi.org/10.1007/s11001-022-09506-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11001-022-09506-9

Keywords

Navigation