Skip to main content
Log in

Anisotropy analysis in shallow marine gas hydrate bearing sediments: a case study from the offshore Mahanadi basin, India

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

Analysis of anisotropy from velocity data is essential for improving the hydrocarbon reservoir characterization. The anisotropy of a medium is affected by the mechanical strength, presence of fracture, mineral distribution of the rock, and its degree affects the seismic velocity. We attempted to characterize the anisotropy of the gas hydrate bearing sediments in the offshore Mahanadi basin using three wells. Initially, the presence of anisotropy was investigated by estimating the stiffness coefficients and Thomsen’s parameters (epsilon, gamma and delta) assuming a horizontal transversely medium using dipole S-wave (upper and lower) velocities. The natural fractures were identified from the formation image data. The strong anisotropy is associated with the presence of natural fractures and lower values of the elastic modulus. Most of the strong and weak anisotropy zones are oriented in the NW to W direction of the study area. Our study suggests that the anisotropy in gas hydrate bearing sediment is stress-induced due to the presence of pore filling fractures, and the change of mechanical behavior. The higher positive values of epsilon and delta with gamma represent either dry solid gas hydrate or free gas filled in the fracture of the sediments as observed in the crossplot analysis. Finally, we modeled P-wave and S-wave velocities by incorporating the Thomsen’s parameters. S-wave velocity is less effective than P-wave velocity at 90° angle of fracture relative to the symmetry axis and the modeled P-wave velocity increases upto 2.8% in the gas hydrate bearing sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bastia R, Nayak P (2006) Tectonostratigraphy and depositional patterns in Krishna offshore basin, Bay of Bengal. Lead Edge 25:839–845

    Article  Google Scholar 

  • Bastia R et al (2010) Structural and tectonic interpretation of geophysical data along the eastern continental margin of India with a special reference to deep water petroliferous basins. J Asian Earth Sci 39:608–619

    Article  Google Scholar 

  • Bastia R, Radhakrishna M, Srinivas T, Nayak S, Nathanial DM, Biswal T, Bidgoli MN, Jing L (2014) Anisotropy of strength and deformability of fractured rocks. J Rock Mech Geotech Eng 6:156–164

    Article  Google Scholar 

  • Bidgoli MN, Jing L (2014) Anisotropy of strength and deformability of fractured rocks. J Rock Mech and Geotech Eng 2014:6(2)

  • Biksham G, Subramanian V (1988) Sediment transport of the Godavari river basin and its controlling factors. J Hydrol 101:275–290

    Article  Google Scholar 

  • Chatterjee R, Singha DK (2018) Stress orientation from image log and estimation of shear wave velocity using multiple regression model: a case study from Krishna-Godavari basin, India. J Indian Geophys Union 22:128–137

    Google Scholar 

  • Coffin R, Pohlman J, Gardner J, Downer R, Wood W, Hamdan L, Walker S, Plummer S, Gettrust J, Diaz J (2007) Methane hydrate exploration on the mid Chilean coast: a geochemical and geophysical survey. J Petrol Sci Eng 56:32–41

    Article  Google Scholar 

  • Collett TS, Riedel M, Cochran J, Boswell R, Presley J, Kumar P, Sathe A, Sethi A, Lall M, Sibal V (2008) The NGHP expedition 01 scientists, national gas hydrate program expedition 01 initial reports. Directorate General of Hydrocarbons, New Delhi

  • Cook AE, Goldberg D, Kleinberg RL (2008) Fracture-controlled gas hydrate systems in the northern Gulf of Mexico. Mar Pet Geol 25:932–941. https://doi.org/10.1016/j.marpetgeo.2008.01.013

    Article  Google Scholar 

  • Cook A, Anderson B, Malinverno A, Mrozewski S, Goldberg D (2010) Electrical anisotropy due to gas hydrate-filled fractures. Geophysics 75(6):173–185. https://doi.org/10.1190/1.3506530

    Article  Google Scholar 

  • Das B, Chatterjee R (2018) Mapping of pore pressure, in-situ stress and brittleness in Unconventional Shale Reservoir of Krishna-Godavari Basin. J Nat Gas Sci Eng 50:74–89

    Article  Google Scholar 

  • Das S, Mohan S, Waraich RS (2010) Success, challenges and pitfalls in deep offshore Mahanadi Basin, East Coast of India. Oct 31–Nov 3, New Delhi, India, Paper Id: 20100583, Petrotech

  • Ekstrom MP, Dahan CA, Chen MY, Lloyd PM, Rossi DJ (1987) Formation imaging with microelectrical scanning arrays. Log Anal 28:294–306

    Google Scholar 

  • Esmersoy C, Boyd A, Kane M, Denoo S (1995) Fracture and stress evaluation using dipole shear anisotropy logs. In: SPWLA 36th annual logging symposium, Paris, June 28–29

  • Fang X, Fehler M, Zhu Z, Chen T, Brown S, Cheng A, Toksoz MN (2013) An approach for predicting stress-induced anisotropy around a borehole. Geophysics 78:143–150. https://doi.org/10.1190/geo2012-0145.1

    Article  Google Scholar 

  • Fuloria RC (1993) Geology and hydrocarbon prospects of Mahanadi Basin, India. In: Proceedings of the 2nd seminar on “Petroliferous Basin in India”, vol 3, Indian Petroleum, Publication, Dehra Dun, pp 355–369

  • Fuloria RC, Pandey RN, Bhavali BR, Mishra JK (1992) Stratigraphy, structure and tectonics of Mahanadi offshore basin. J Geol Surv India 29:255–265

    Google Scholar 

  • Ghosh R, Kalachand S, Ojha M (2010) Effective medium modeling of gas hydrate filled fractures using the sonic log in the Krishna-Godavari basin, offshore eastern India. J Geophys Res 115:B06101. https://doi.org/10.1029/2009JB006711

    Article  Google Scholar 

  • Gupta IN (1973) Preliminary variations in S-wave velocity anisotropy before earthquakes in Nevada. Science 182:1123–1136

    Article  Google Scholar 

  • Hudson JA (1980) Overall properties of a cracked solid. Math Proc Cambridge Philos Soc 88:371–384. https://doi.org/10.1017/S0305004100057674

    Article  Google Scholar 

  • Jagannathan CR, Ratnam C, Baishya NC, Dasgupta U (1983) Geology of offshore Mahanadi Basin. Petroleum Asia J 6:101–104

    Google Scholar 

  • Jaeger JC, Cook NWG (1979) Fundamentals of rock mechanics, 3rd edn. Chapman & Hall, New York

    Google Scholar 

  • Kumar D, Sen MK, Bangs NL, Wang C, Pecher I (2006) Seismic anisotropy at Hydrate Ridge. Geophys Res Lett 33:L01306. https://doi.org/10.1029/2005GL023945

    Article  Google Scholar 

  • Kumar P, Collett TS, Boswell R, Cochran JR, Lall M, Mazumdar A, Ramana MV, Ramprasad T, Riedel M, Sain K, Sathe AV, Vishwanath K, Yadav US (2014) Geologic implications of gas hydrates in the offshore of India: Krishna Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala Konkan Basin. Marine Pet Geol 58:29–98

    Article  Google Scholar 

  • Lee MW, Collett TS (2012) Characteristics and interpretation of fracture-filled gas hydrate-an example from the Ulleung Basin, East Sea of Korea. J Marine Pet Geol 47:168–181

    Article  Google Scholar 

  • Liu E, Li X-Y, Queen JH (2000) Discrimination of pore fluids from P and converted shear-wave AVO analysis. In: Ikelle L, Gangi A (eds) Anisotropy 2000: fractures, converted waves and case studies. Proceedings of the ninth international workshop on seismic anisotropy, SEG, pp 203–221.

  • Mavko G, Chan C, Mukerji T (1995) Fluid substitution: estimating changes in Vp without knowing Vs. Geophysics 60:1750–1755

    Article  Google Scholar 

  • Mohammed YA, Zillur R (2001) A Mathematical Algorithm for Modeling Geomechanical Rock Properties of the Khuff and Pre-Khuff Reservoirs in Ghawar Field. SPE Middle East Oil Show, Bahrain, March 17–20, Paper id: SPE 68194

  • Musgrave MJP (1970) Crystal acoustics: Holden day.

  • Ostadhassan M, Zeng Z, Jabbari H (2012) Anisotropy analysis in shale using advance sonic data-Bakken case study. In: AAPG annual convention and exhibition, Long Beach, California

  • Peacher IA, Holbrook WS, Sen MK, Lizarralde D, Wood WT, Hutchinson DR, Dillon WP, Hoskins H, Stephen RA (2003) Seismic anisotropy in gas hydrate and gas bearing sediments on the Blake Ridge from a walk away vertical seismic profile. Geophys Res Lett 30:1733

    Google Scholar 

  • Phillips SC, Flemings PB, Holland ME, Schultheiss PJ, Waite WF, Jang J, Petrou EG, Hammon H (2020) High concentration methane hydrate in a silt reservoir from the deep-water Gulf of Mexico. AAPG Bull. https://doi.org/10.1306/01062018280

    Article  Google Scholar 

  • Potter CC, Foltinek DS (1997) Formation elastic parameters by deriving S-wave velocity logs, CREWES report, 9, February 10–23

  • Prioul R, Donald A, Koespsell R, El Marzouki Z, Bratton T (2007) Forward modeling of fracture-induced sonic anisotropy using a combination of borehole image and sonic logs. Geophysics 72:135–147. https://doi.org/10.1190/1.2734546

    Article  Google Scholar 

  • Rai N, Singha DK, Shukla PK, Sain K (2020) Delineation of discontinuity using multi-channel seismic attributes: an implication for identifying fractures in gas hydrate sediments in offshore Mahanadi basin. Result Geophys Sci 1–4:100007

    Google Scholar 

  • Rajabi M, Sherkati S, Bohloli B, Tingray M (2010) Subsurface fracture analysis and determination of in situ stress direction using FMI logs: an examples from the Santonian Carbonates (IIam fracture) in the Abadan Plain. Iran Tectophys 492:192–200

    Article  Google Scholar 

  • Ramana MV, Subrahmanyam V, Chaubey AK, Ramprasad T, Sarma KVLNS, Sastri VV, Venkatachala BS, Narayanan V (1981) The evolution of the east coast of India. Palaeogeogr Palaeoclimatol Palaeoecol 36:23–54

    Article  Google Scholar 

  • Rüger A (1998a) Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophysics 63:935–947. https://doi.org/10.1190/1.1444405

    Article  Google Scholar 

  • Rüger A (1998b) Reflection coefficients and azimuthal AVO analysis in anisotropic media. Geophysical monograph series no. 10, Society of Exploration Geophysicists.

  • Ruger A (2002) Reflection coefficients and azimuthal AVO analysis in anisotropic media, Geophysical monograph series, Number 10, scociety of exploration geophysicists

  • Sain K, Gupta HK (2008) Gas hydrates: Indian scenario. J Geol Soc 72:299–311

    Google Scholar 

  • Sain K, Gupta HK (2012) Gas hydrates in India: potential and development. Gondwana Res 22:645–657

    Article  Google Scholar 

  • Sain K, Rajesh V, Satyavani N, Subbarao KV, Subrahmanyam C (2011) Gas-hydrate stability thickness map along the Indian continental margin. Mar Pet Geol 28:1779–1786

    Article  Google Scholar 

  • Sain K, Ojha M, Satyavani N, Ramadass GA, Ramprasad T, Das SK, Gupta HK (2012) Gas hydrates in KG and Mahanadi basins: new data. J Geol Soc India 79:553–556

    Article  Google Scholar 

  • Sastri VV, Sinha RN, Singh G, Murti KVS (1973) Stratigraphy and tectonics of sedimentary basins on the east coast of penninsular India. AAPG Bull 57:655–678

    Google Scholar 

  • Sastri VV, Venkatachala BS, Narayanan V (1981) The evolution of the east coast of India. Palaeogeogr Palaeoclimatol Palaeoecol 36:23–54

    Article  Google Scholar 

  • Satyavani N, Sen MK, Sain K (2013) Azimuthal anisotropy from OBS observation in Mahanadi offshore. India Interpret 1(2):187–198

    Google Scholar 

  • Sayers CM (1994) The elastic anisotropy of shales. J Geophys Res Solid Earth 99:767–774

    Article  Google Scholar 

  • Sayers CM (2002) Stress-dependent elastic anisotropy of sandstones. Geophys Prospect 50:85–95. https://doi.org/10.1046/j.1365-2478.2002.00289

    Article  Google Scholar 

  • Sayers CM (2005) Seismic anisotropy of shales. Geophysics 64:93–98

    Article  Google Scholar 

  • Sayers CM, Kachanov M (1995) Microcrack-induced elastic wave anisotropy of brittle rocks. J Geophys Res 100:4149–4156. https://doi.org/10.1029/94JB03134

    Article  Google Scholar 

  • Schoenberg M, Sayers CM (1995) Seismic anisotropy of fractured rock. Geophysics 60:204–211. https://doi.org/10.1190/1.1443748

    Article  Google Scholar 

  • Shankar U, Pandey AK (2019) Estimation of gas hydrate saturation using isotropic and anisotropic modeling in the Mahanadi basin. J Earth Syst Sci 128:163

    Article  Google Scholar 

  • Shankar U, Riedel M (2014) Assessment of gas hydrate saturation in marine sediments from resistivity and compressional-wave velocity log measurements in the Mahanadi Basin, India. Mar Pet Geol 58:265–277

    Article  Google Scholar 

  • Shankar U, Gupta DK, Bhowmick D, Sain K (2013) Gas hydrate and free-gas saturations using rock physics modelling at site NGHP-01-05 in the Krishna-Godavaribasin, eastern Indian margin. J Petrol Sci Eng 106:62–70

    Article  Google Scholar 

  • Shaw RK, Sen MK (2006) Use of AVOA data to estimate fluid in a vertically fractured reservoir. Geophysics 71(3):15–24. https://doi.org/10.1190/1.2194896

    Article  Google Scholar 

  • Sil S (2012) Fracture parameter estimation from well-log data. Geophysics 78(3):129–134

    Article  Google Scholar 

  • Sil S, Keys RG, Roy B, Foster DJ (2012) Methods for seismic fracture parameter estimation and gas filled fracture identification from vertical well log data. U. S. Patent application 20,120,250,459.

  • Sil S, Srivastava R, Sen MK (2010) Observations of shear wave splitting in the multicomponent node data from Atlantis field, Gulf of Mexico. Geophys Prospect 58:953–964

    Google Scholar 

  • Singha DK, Shukla PK, Chatterjee R, Sain K (2019) Multi-channel 2D seismic constraints on pore pressure- and vertical stress- related gas hydrate in the deep offshore of the Mahanadi Basin. India. J Asian Earth Sci 180:103882

    Article  Google Scholar 

  • Tatham RH, McCormack MD, Neitzel EB, Winterstein DF (1991) Multicomponent seismology in petroleum exploration. Society of Exploration Geophysicists, Tulsa, Oklahoma, p 248

    Book  Google Scholar 

  • Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954–1966. https://doi.org/10.1190/1.1442051

    Article  Google Scholar 

  • Thomsen L (1999) Converted-wave reflection seismology over inhomogeneous, anisotropic media. Geophysics 64:678–690. https://doi.org/10.1190/1.1444577

    Article  Google Scholar 

  • Tsvankin I (1996) P-wave signature and notation for transversely isotropic media. An overview. Geophysics 61:467–483

    Article  Google Scholar 

  • Twiss RJ, Moores EM (1992) Structural geology. W.H. Freeman & Company, New York, p 532

    Google Scholar 

  • Wang Z (2002) Seismic anisotropy in sedimentary rocks. Part 2. Laboratory data. Geophysics 67:1423–1440. https://doi.org/10.1190/1.1512743

    Article  Google Scholar 

  • Winkler KW (1996) Azimuthal velocity variations caused by boreholestress concentrations. J Geophys Res 101:8615–8621. https://doi.org/10.1029/96JB00093

    Article  Google Scholar 

  • Yan J (2002) Reservoir parameters from well log and core data: a case study from the North Sea. Pet Geosci 08:63–69

    Article  Google Scholar 

  • Zoback MD, Moods D, Mastin L, Anderson RN (1985) Wellbore breakout and in situ stress. J Geophys Res 90:5523–5530

    Article  Google Scholar 

Download references

Acknowledgements

Authors’ express sincere thanks to the department of science and technology (DST) INSPIRE, Delhi, for funding the project (DST/Inspire Faculty award/2016/Inspire/04/2015/001681) dated 10-08-2015. Authors also express their gratitude to Director CSIR-National Geophysical Research Institute, Hyderabad for sharing NGHP-01 well data. Author’s also sincerely thanks to Prof. MrinalSen (University of Texas, Austin) for his valuable support for suggestions and comments for improving the scientific manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dip Kumar Singha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, P.K., Singha, D.K. & Sain, K. Anisotropy analysis in shallow marine gas hydrate bearing sediments: a case study from the offshore Mahanadi basin, India. Mar Geophys Res 43, 3 (2022). https://doi.org/10.1007/s11001-021-09465-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11001-021-09465-7

Keywords

Navigation