Seabed mapping in the Pelagie Islands marine protected area (Sicily Channel, southern Mediterranean) using Remote Sensing Object Based Image Analysis (RSOBIA)

Abstract

In this paper we present the seabed maps of the shallow-water areas of Lampedusa and Linosa, belonging to the Pelagie Islands Marine Protected Area. Two surveys were carried out (“Lampedusa 2015” and “Linosa 2016”) to collect bathymetric and acoustic backscatter data through the use of a Reson SeaBat 7125 high-resolution multibeam system. Ground-truth data, in the form of grab samples and diver video-observations, were also collected during both surveys. Sediment samples were analyzed for grain size, while video images were analyzed and described revealing the acoustic seabed and other bio-physical characteristics. A map of seabed classification, including sediment types and seagrass distribution, was produced using the tool Remote Sensing Object Based Image Analysis (RSOBIA) by integrating information derived from backscatter data and bathy-morphological features, validated by ground-truth data. This allows to create a first seabed maps (i.e. benthoscape classification), of Lampedusa and Linosa, at scale 1:20 000 and 1:32 000, respectively, that will be checked and implemented through further surveys. The results point out a very rich and largely variable marine ecosystem on the seabed surrounding the two islands, with the occurrence of priority habitats, and will be of support for a more comprehensive maritime spatial planning of the Marine Protected Area.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Agardy MT (1994) Advances in marine conservation: the role of marine protected areas. Trends Ecol Evol 9:267–270. https://doi.org/10.1016/0169-5347(94)90297-6

    Article  Google Scholar 

  2. Agnesi S, Annunziatellis A, Casese ML et al (2009) Analysis on the coralligenous assemblages in the Mediterranean Sea: a review of the current state of knowledge in support of future investigations. In: Proceedings of the 1st Mediterranean symposium on the conservation of the coralligenous and other calcareous bio-concretions. C. Pergent-Martini & M. Brichet (Eds). UNEP-MAP RAC/SPA (Tabarka, 15–16 January 2009). Tunis, RAC/SPA publication

  3. Argnani A (1990) The strait of sicily rift zone: foreland deformation related to the evolution of a back-arc basin. J Geodyn 12:311–331. https://doi.org/10.1016/0264-3707(90)90028-S

    Article  Google Scholar 

  4. Astraldi M, Gasparini GP, Gervasio L, Salusti E (2001) Dense water dynamics along the strait of sicily (Mediterranean Sea). J Phys Oceanogr 31:3457–3475. https://doi.org/10.1175/1520-0485(2001)031%3C3457:DWDATS%3E2.0.CO;2

    Article  Google Scholar 

  5. Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol 44:123–195

    Article  Google Scholar 

  6. Barbera C, Bordehore C, Borg JA et al (2003) Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat Conserv Mar Freshw Ecosyst 13:65–76. https://doi.org/10.1002/aqc.569

    Article  Google Scholar 

  7. Bensch A, Gianni M, Greboval D et al (2009) Worldwide review of bottom fisheries in the high seas. FAO Fish Tech Pap 552:145

    Google Scholar 

  8. Bentrem FW, Avera WE, Sample J (2006) Estimating surface sediments using multibeam sonar—acoustic backscatter processing for characterization and mapping of the ocean bottom. Sea Tecnol 47:37

    Google Scholar 

  9. Bernal M (2016) Management of deep sea fisheries and protection of vulnerable marine ecosystems in the Mediterranean Sea. In: The General Fisheries Commission for the Mediterranean, FAO—GFCM Fishery Resources Officer

  10. Biondo M, Bartholomä A (2017) A multivariate analytical method to characterize sediment attributes from high-frequency acoustic backscatter and ground-truthing data (Jade Bay, German North Sea coast). Cont Shelf Res 138:65–80. https://doi.org/10.1016/j.csr.2016.12.011

    Article  Google Scholar 

  11. Birkett DA, Maggs C, Drig MJ (1998) An overview of dynamics and sensitivity characteristics for conservation management of marine SACs. V:1–117

  12. Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65:2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004

    Article  Google Scholar 

  13. Bonacorsi M, Pergent-Martini C, Clabaut P, Pergent G (2012) Coralligenous “atolls”: discovery of a new morphotype in the Western Mediterranean Sea. Comptes Rendus Biol 335:668–672. https://doi.org/10.1016/j.crvi.2012.10.005

    Article  Google Scholar 

  14. Bracchi V, Savini A, Marchese F et al (2015) Coralligenous habitat in the Mediterranean Sea: a geomorphological description from remote data. Ital J Geosci 134:32–40. https://doi.org/10.3301/IJG.2014.16

    Article  Google Scholar 

  15. Bracchi VA, Basso D, Marchese F et al (2017) Coralligenous morphotypes on subhorizontal substrate: a new categorization. Cont Shelf Res 144:10–20. https://doi.org/10.1016/j.csr.2017.06.005

    Article  Google Scholar 

  16. Briggs KB, Tang D, Williams KL (2002) Characterization of interface roughness of rippled sand off fort Walton Beach, Florida. IEEE J Ocean Eng 27:505–514. https://doi.org/10.1109/JOE.2002.1040934

    Article  Google Scholar 

  17. Brown CJ, Blondel P (2009) Developments in the application of multibeam sonar backscatter for seafloor habitat mapping. Appl Acoust 70:1242–1247. https://doi.org/10.1016/j.apacoust.2008.08.004

    Article  Google Scholar 

  18. Brown CJ, Smith SJ, Lawton P, Anderson JT (2011) Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar Coast Shelf Sci 92:502–520. https://doi.org/10.1016/j.ecss.2011.02.007

    Article  Google Scholar 

  19. Bunting P, Clewley D, Lucas RM, Gillingham S (2014) The remote sensing and GIS software library (RSGISLib). Comput Geosci 62:216–226. https://doi.org/10.1016/j.cageo.2013.08.007

    Article  Google Scholar 

  20. Calanchi N, Colantoni P, Rossi PL et al (1989) The strait of sicily continental rift systems: physiography and petrochemistry of the submarine volcanic centres. Mar Geol 87:55–83. https://doi.org/10.1016/0025-3227(89)90145-X

    Article  Google Scholar 

  21. Chiocci FL, D’Angelo S, Romagnoli C (2004) Atlas of submerged depositional terraces along the Italian coast. Roma

  22. Civile D, Lodolo E, Accettella D et al (2010) The Pantelleria graben (Sicily Channel, Central Mediterranean): an example of intraplate “passive” rift. Tectonophysics 490:173–183. https://doi.org/10.1016/j.tecto.2010.05.008

    Article  Google Scholar 

  23. Collier JS, Brown CJ (2005) Correlation of sidescan backscatter with grain size distribution of surficial seabed sediments. Mar Geol 214:431–449. https://doi.org/10.1016/j.margeo.2004.11.011

    Article  Google Scholar 

  24. Dartnell P, Gardner JV (2004) Predicting seafloor facies from multibeam bathymetry and backscatter data. Photogramm Eng Remote Sens 70:1081–1091. https://doi.org/10.14358/PERS.70.9.1081

    Article  Google Scholar 

  25. De Falco G, Tonielli R, Di Martino G et al (2010) Relationships between multibeam backscatter, sediment grain size and Posidonia oceanica seagrass distribution. Cont Shelf Res 30:1941–1950. https://doi.org/10.1016/j.csr.2010.09.006

    Article  Google Scholar 

  26. Di Geronimo R, Giaccone G (1994) Le alghe calcaree nel detritico costiero di Lampedusa (Isole Pelagie). Boll Accad Gioenia Sci Nat Catania 27:5–25

    Google Scholar 

  27. Di Martino G, Innangi S, Felsani M et al (2015) Acquisizione dati morfo-batimetrici: convenzione Isole Pelagie per il monitoraggio della prateria a Posidonia oceanica. Technical Report, IAMC-CNR, p. 12. SOLAR. http://eprints.bice.rm.cnr.it/11261/

  28. Diesing M, Green SL, Stephens D et al (2014) Mapping seabed sediments: comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont Shelf Res 84:107–119. https://doi.org/10.1016/j.csr.2014.05.004

    Article  Google Scholar 

  29. Ehrhold A, Hamon D, Guillaumont B (2006) The REBENT monitoring network, a spatially integrated, acoustic approach to surveying nearshore macrobenthic habitats: application to the Bay of Concarneau (South Brittany, France). ICES J Mar Sci 63:1604–1615. https://doi.org/10.1016/j.icesjms.2006.06.010

    Article  Google Scholar 

  30. Ferrini VL, Flood RD (2006) The effects of fine-scale surface roughness and grain size on 300 kHz multibeam backscatter intensity in sandy marine sedimentary environments. Mar Geol 228:153–172. https://doi.org/10.1016/j.margeo.2005.11.010

    Article  Google Scholar 

  31. Fledermaus User Manual (2016) QPS and Saab Group. ​https://confluence.qps.nl/fm780

  32. Folk RL (1980) Petrologie of sedimentary rocks. 170. Hemphll Publ Company, Austin. https://doi.org/10.1017/CBO9781107415324.004

    Google Scholar 

  33. Fonseca L, Mayer L (2007) Remote estimation of surficial seafloor properties through the application angular range analysis to multibeam sonar data. Mar Geophys Res 28:119–126. https://doi.org/10.1007/s11001-007-9019-4

    Article  Google Scholar 

  34. Fonseca L, Brown C, Calder B et al (2009) Angular range analysis of acoustic themes from Stanton Banks Ireland: a link between visual interpretation and multibeam echosounder angular signatures. Appl Acoust 70:1298–1304. https://doi.org/10.1016/j.apacoust.2008.09.008

    Article  Google Scholar 

  35. Francour P, Magréau JF, Mannoni AP et al (2006) Management guide for Marine Protected Areas of the Mediterranean sea, permanent ecological moorings. Univ Nice-Sophia Antip Parc Natl Port-Cros, Nice 68 pp

  36. Giardina F, De Rubeis P (2012) Analisi della prateria a Posidonia oceanica (L.) Delile (Najadales, Potamogetonaceae) dell’isola di Lampedusa (AMP “Isole Pelagie”, Canale di Sicilia). Boll Accad Gioenia di Sci Nat di Catania 45:651–664

    Google Scholar 

  37. Gobert S, Cambridge M, Velimirov B et al (2006) Biology of posidonia. In: Larum A, Orth R, Duarte C (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin. pp 387–408

    Google Scholar 

  38. Goff JA, Kraft BJ, Mayer LA et al (2004) Seabed characterization on the New Jersey middle and outer shelf: correlatability and spatial variability of seafloor sediment properties. Mar Geol 209:147–172. https://doi.org/10.1016/j.margeo.2004.05.030

    Article  Google Scholar 

  39. Grasso M, Pedley HM (1985) The Pelagian Islands: a new geological interpretation from sedimentological and tectonic studies and its bearing on the evolution of the Central Mediterranean Sea (Pelagian Block). Geol Rom 24:13–34

    Google Scholar 

  40. Grasso M, Pedley HM (1988) Carta geologica dell’isola di Lampedusa. Isole Pelagie, Mediterraneo Centrale) 1/10,000. Cartogr SELCA, Florence

  41. Grasso M, Lanzafame G, Rossi PL et al (1991) Volcanic evolution of the island of Linosa, strait of Sicily. Geol Soc Italy Mem 47:509–525

    Google Scholar 

  42. Guidetti P, Milazzo M, Bussotti S et al (2008) Italian marine reserve effectiveness: does enforcement matter? Biol Conserv 141:699–709. https://doi.org/10.1016/j.biocon.2007.12.013

    Article  Google Scholar 

  43. Hemminga MA, Duarte CM (2000) Seagrass ecology, Cambridge University Press, Cambridge. p 298.

    Google Scholar 

  44. Hillman JIT, Lamarche G, Pallentin A et al (2017) Validation of automated supervised segmentation of multibeam backscatter data from the Chatham Rise, New Zealand. Mar Geophys Res 0:1–23. https://doi.org/10.1007/s11001-016-9297-9

    Google Scholar 

  45. Huang Z, Siwabessy J, Nichol SL, Brooke BP (2014) Predictive mapping of seabed substrata using high-resolution multibeam sonar data: a case study from a shelf with complex geomorphology. Mar Geol 357:37–52. https://doi.org/10.1016/j.margeo.2014.07.012

    Article  Google Scholar 

  46. Ierodiaconou D, Schimel ACG, Kennedy D et al (2018) Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters. Mar Geophys Res 39:271–288. https://doi.org/10.1007/s11001-017-9338-z

    Article  Google Scholar 

  47. Innangi S, Tonielli R (2017) Relazione finale della Campagna Oceanografica “Linosa.” Techical Report, IAMC-CNR, p 20, SOLAR. http://eprints.bice.rm.cnr.it/id/eprint/15783

  48. Innangi S, Barra M, Brando A et al (2008) Construction of the thematic maps of the seabed along the Lucanian Tyrrhenian Coast of Maratea (PZ). Rend Online Soc Geol Ital 3:476–477

    Google Scholar 

  49. Innangi S, Barra M, Di Martino G et al (2015) Reson SeaBat 8125 backscatter data as a tool for seabed characterization (Central Mediterranean, Southern Italy): results from different processing approaches. Appl Acoust 87:109–122. https://doi.org/10.1016/j.apacoust.2014.06.014

    Article  Google Scholar 

  50. Innangi S, Passaro S, Tonielli R et al (2016) Seafloor mapping using high-resolution multibeam backscatter: The Palinuro Seamount (Eastern Tyrrhenian Sea). J Maps 12:736–746. https://doi.org/10.1080/17445647.2015.1071719

    Article  Google Scholar 

  51. Ismail K, Huvenne VAI, Masson DG (2015) Objective automated classification technique for marine landscape mapping in submarine canyons. Mar Geol 362:17–32. https://doi.org/10.1016/j.margeo.2015.01.006

    Article  Google Scholar 

  52. Jameson SC, Tupper MH, Ridley JM (2002) The three screen doors: can marine “protected” areas be effective? Mar Pollut Bull 44:1177–1183. https://doi.org/10.1016/S0025-326X(02)00258-8

    Article  Google Scholar 

  53. Karoui I, Fablet R, Boucher JM, Augustin JM (2009) Seabed segmentation using optimized statistics of sonar textures. IEEE Trans Geosci Remote Sens 47:1621–1631. https://doi.org/10.1109/TGRS.2008.2006362

    Article  Google Scholar 

  54. Kostylev V, Todd B, Fader G et al (2001) Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographs. Mar Ecol Prog Ser 219:121–137

    Article  Google Scholar 

  55. Laborel J (1961) Le concrétionnement algal “coralligène” et son importance géomorphologique en Méditerranée. Rec Trav Stat Mar Endoume 23:37–60

    Google Scholar 

  56. Laborel J (1987) Marine biogenic constructions in the Mediterranean. Sci Rep Port-Cros Natl Park 13:97–126

    Google Scholar 

  57. Lacharité M, Brown CJ, Gazzola V (2017) Multisource multibeam backscatter data: developing a strategy for the production of benthic habitat maps using semi-automated seafloor classification methods. Mar Geophys Res 39:307–322. https://doi.org/10.1007/s11001-017-9331-6

    Article  Google Scholar 

  58. Lanti E, Lanzafame G, Rossi PL et al (1988) Vulcanesimo e tettonica nel Canale di Sicilia: l’isola di Linosa. Miner Petrogr Acta 31:69–93

    Google Scholar 

  59. Lanzafame G, Rossi PL, Tranne CA, Lanti E (1994) Carta geologica dell’isola di Linosa 1: 5000. SELCA

  60. Le Bas T (2016) RSOBIA—a new OBIA toolbar and toolbox in ArcMap 10.x for segmentation and classification. In: Kerle N, Gerke M, Lefevre S (eds) GEOBIA 2016: Solutions and Synergies. University of Twente Faculty of Geo-Information and Earth Observation, Twente, p 4

    Google Scholar 

  61. Le Bas TP, Huvenne VAI (2009) Acquisition and processing of backscatter data for habitat mapping—comparison of multibeam and sidescan systems. Appl Acoust 70:1248–1257. https://doi.org/10.1016/j.apacoust.2008.07.010

    Article  Google Scholar 

  62. Lentini F, Carbone S, Catalano S, Grasso M (1995) Principali lineamenti strutturali della Sicilia nord-orientale. Stud Geol Camerti 2:319–929

    Google Scholar 

  63. Li M, Zang S, Zhang B et al (2014) A review of remote sensing image classification techniques: the role of Spatio-contextual information. Eur J Remote Sens 47:389–411. https://doi.org/10.5721/EuJRS20144723

    Article  Google Scholar 

  64. Lo Iacono C, Gràcia E, Diez S et al (2008) Seafloor characterization and backscatter variability of the Almería Margin (Alboran Sea, SW Mediterranean) based on high-resolution acoustic data. Mar Geol 250:1–18. https://doi.org/10.1016/j.margeo.2007.11.004

    Article  Google Scholar 

  65. Lucieer VL (2008) Object-oriented classification of sidescan sonar data for mapping benthic marine habitats. Int J Remote Sens 29:905–921. https://doi.org/10.1080/01431160701311309

    Article  Google Scholar 

  66. Lucieer V, Lamarche G (2011) Unsupervised fuzzy classification and object-based image analysis of multibeam data to map deep water substrates, Cook Strait, New Zealand. Cont Shelf Res 31:1236–1247. https://doi.org/10.1016/j.csr.2011.04.016

    Article  Google Scholar 

  67. Mallace D (2012) QPS- Fledermaus Workshop- FMGeocoder Webinar. 1–49

  68. Martin CS, Giannoulaki M, De Leo F et al (2014) Coralligenous and maërl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Sci Rep 4:1–9. https://doi.org/10.1038/srep05073

    Google Scholar 

  69. Micallef A, Le Bas TP, Huvenne VAI et al (2012) A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data. Cont Shelf Res 39–40:14–26. https://doi.org/10.1016/j.csr.2012.03.008

    Article  Google Scholar 

  70. Montereale Gavazzi G, Madricardo F, Janowski L et al (2016) Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats—application to the Venice Lagoon, Italy. Estuar Coast Shelf Sci 170:45–60. https://doi.org/10.1016/j.ecss.2015.12.014

    Article  Google Scholar 

  71. OCEANA (2009) Developing a list of Vulnerable Marine Ecosystems. In: 40th session of the General Fisheries Commission for the Mediterranean Mediterranean VMEs: diverse, fragile habitats that support fisheries

  72. Parnum I, Gavrilov A, Siwabessy P, Duncan A (2005) The effect of incident angle on statistical variation of backscatter measured using a high-frequency multibeam sonar. In: Proceedings of ACOUSTICS 2005, Busselton, Western Australia, 9–11 November, pp 433–438

  73. Peña V, Bárbara I (2009) Distribution of the Galician maerl beds and their shape classes (Atlantic Iberian Peninsula): proposal of areas in future conservation actions. Cah Biol Mar 50:353–368

    Google Scholar 

  74. Pérès JM, Picard J (1964) Nouveau manuel de bionomie benthique de la mer Méditerranée. Recl des Trav la Stn Mar d’Endoume 31:1–131

    Google Scholar 

  75. Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone. Soil Sci 117:130

    Article  Google Scholar 

  76. Pieraccini M, Coppa S, De Lucia GA (2016) Beyond marine paper parks? Regulation theory to assess and address environmental non-compliance. Aquat Conserv Mar Freshw Ecosyst. https://doi.org/10.1002/aqc.2632

    Google Scholar 

  77. Pomeroy RS, Watson LM, Parks JE, Cid GA (2005) How is your MPA doing? A methodology for evaluating the management effectiveness of marine protected areas. Ocean Coast Manag 48:485–502. https://doi.org/10.1016/j.ocecoaman.2005.05.004

    Article  Google Scholar 

  78. Poulain P-M, Menna M, Mauri E (2012) Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J Phys Oceanogr 42:973–990. https://doi.org/10.1175/JPO-D-11-0159.1

    Article  Google Scholar 

  79. Romagnoli C (2004) Submerged depositional terraces around Linosa Island (Sicily Channel). In: APAT - Memorie descrittive della Carta Geologica D’Italia. pp 71–74

  80. Sartoretto S (1994) Structure et dynamique d’un nouveau type de bioconstruction à Mesophyllum lichenoides (Ellis) Lemoine (Corallinales, Rhodophyta). Comptes rendus l’Académie des Sci Série 3 Sci la vie 317:156–160

    Google Scholar 

  81. Stewart WK, Chu D, Malik S et al (1994) Quantitative seafloor characterization using a bathymetric sidescan sonar. IEEE J Ocean Eng 19:599–610. https://doi.org/10.1109/48.338396

    Article  Google Scholar 

  82. Sutherland T, Galloway J, Loschiavo R et al (2007) Calibration techniques and sampling resolution requirements for groundtruthing multibeam acoustic backscatter (EM3000) and QTC VIEW™ classification technology. Estuar Coast Shelf Sci 75:447–458. https://doi.org/10.1016/j.ecss.2007.05.045

    Article  Google Scholar 

  83. Tonielli R, Innangi S, Budillon F et al (2016) Distribution of Posidonia oceanica (L.) Delile meadows around Lampedusa Island (Strait of Sicily, Italy). J Maps 12:249–260. https://doi.org/10.1080/17445647.2016.1195298

    Article  Google Scholar 

  84. Truffarelli C, Belluscio A, Criscioli A, Ardizzone GD (2012) Interpretation of Sonar Images in the Posidonia oceanica cartography. Sonograms analysis and description. Biol Mar Mediterr 19:84–91

    Google Scholar 

  85. UNEP-MAP-RAC, SPA (2008) Action plan for the conservation of the coralligenous and other calcareous bio-concretions in the Mediterranean Sea. UNEP MAP RAC-SPA publ, Tunis

    Google Scholar 

  86. UNEP-MAP-RAC, SPA (2015) Sicily Channel/Tunisian Plateau: Topography, circulation and their effects on biological component. UNITED NATIONS Environ Program Mediterr ACTION PLAN, Tunis

    Google Scholar 

  87. Wagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained K-means clustering with background knowledge. Int Conf Mach Learn 577–584. https://doi.org/10.1109/TPAMI.2002.1017616

  88. Wright DJ, Pendleton M, Boulware J et al (2012) ArcGIS Benthic Terrain Modeler (BTM), v. 3.0, Environmental Systems Research Institute, NOAA Coastal Services Center, Massachusetts Office of Coastal Zone Management. esriurl com/5754

Download references

Acknowledgements

We thank Simone D’Ippolito, the captain of the M/B ‘Risal’, for the help and continuous support during all the operations of data acquisition. Thanks to the crew of the R/V ‘Minerva Uno’, for all the support during board and research operations. The authors wish to thank Sergio Monteleone and Patricia Scaflani for their comments to the first draft of the manuscript.

Funding

This study benefited from contribution of the project “Implementation of research activity and monitoring around Pelagie Islands Marine Protected Area”, within the project “CAmBiA – Contabilità Ambientale e Bilancio Ambientale” funded by the Ministry of the Environment and Protection of Land and Sea (MATTM – Ministero dell’Ambiente e della Tutela del Territorio e del Mare), directive n° 5135 of march 2015. This study also benefited from the contribution of the RITMARE Flagship Project, funded by Ministry of Education, University and Research (MIUR – Ministero dell’Istruzione dell’Università e della Ricerca) [NRP 2011–2013].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sara Innangi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3599 KB) A) High resolution DTM of Linosa island and shallow water offshore (2.5 × 2.5 m pixel resolution) with 5 m contouring. The location of bathymetric transects T’1 and T’2 is indicated, as well as ground-truth points (Rov and grab samples position). B) High resolution snippet mosaic of Linosa island and shallow water offshore (2.5 × 2.5 m pixel resolution) with 5 m contouring.

Supplementary material 2 (PDF 3314 KB) A) High resolution DTM of Lampedusa island and shallow water offshore (2.5 × 2.5 m pixel resolution) with 5 m contouring. The location of bathymetric transects T1 and T2 is indicated, as well as video points position. B) High resolution snippet mosaic of Lampedusa island and shallow water offshore (2.5 × 2.5 m pixel resolution) with 5 m contouring.

1

Supplementary material 3 (PDF 2382 KB) Raster images used to analyze the Lampedusa seabed with RSOBIA. a) Snippet mosaic (backscatter), where the brightness values are given (low value corresponding to high backscatter and low absorption); b) DTM image (in meters); c) the surface roughness (in dimensionless value) derived trough RSOBIA; d): the slope image (in degree) derived trough RSOBIA. 2 RSOBIA segmentation results: a) shows the BD segmentation; b) shows the BDRS segmentation. The maps show the majority, the most common class of all pixels in polygon. This is the main class for interpretation. 3 Pairwise comparison of the two segmentations for a sector of Lampedusa. The BDRS segmentation shows a better recognition of the acoustic facies boundaries compared to BD segmentation. For this reason, it was decided to adopt the BDRS segmentation for the interpretation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Innangi, S., Tonielli, R., Romagnoli, C. et al. Seabed mapping in the Pelagie Islands marine protected area (Sicily Channel, southern Mediterranean) using Remote Sensing Object Based Image Analysis (RSOBIA). Mar Geophys Res 40, 333–355 (2019). https://doi.org/10.1007/s11001-018-9371-6

Download citation

Keywords

  • Multibeam bathymetry
  • Backscatter
  • Benthoscapes
  • Seabed classification
  • Ground-truth data
  • Posidonia oceanica
  • Coralligenous habitat