Marine Geophysical Research

, Volume 39, Issue 1–2, pp 307–322 | Cite as

Multisource multibeam backscatter data: developing a strategy for the production of benthic habitat maps using semi-automated seafloor classification methods

  • Myriam Lacharité
  • Craig J. Brown
  • Vicki Gazzola
Original Research Paper


The establishment of multibeam echosounders (MBES) as a mainstream tool in ocean mapping has facilitated integrative approaches towards nautical charting, benthic habitat mapping, and seafloor geotechnical surveys. The bathymetric and backscatter information generated by MBES enables marine scientists to present highly accurate bathymetric data with a spatial resolution closely matching that of terrestrial mapping, and can generate customized thematic seafloor maps to meet multiple ocean management needs. However, when a variety of MBES systems are used, the creation of objective habitat maps can be hindered by the lack of backscatter calibration, due for example, to system-specific settings, yielding relative rather than absolute values. Here, we describe an approach using object-based image analysis to combine 4 non-overlapping and uncalibrated (backscatter) MBES coverages to form a seamless habitat map on St. Anns Bank (Atlantic Canada), a marine protected area hosting a diversity of benthic habitats. The benthoscape map was produced by analysing each coverage independently with supervised classification (k-nearest neighbor) of image-objects based on a common suite of 7 benthoscapes (determined with 4214 ground-truthing photographs at 61 stations, and characterized with backscatter, bathymetry, and bathymetric position index). Manual re-classification based on uncertainty in membership values to individual classes—especially at the boundaries between coverages—was used to build the final benthoscape map. Given the costs and scarcity of MBES surveys in offshore marine ecosystems—particularly in large ecosystems in need of adequate conservation strategies, such as in Canadian waters—developing approaches to synthesize multiple datasets to meet management needs is warranted.


Multibeam echosounder Backscatter Habitat mapping Benthoscape Atlantic Canada 



The authors would like to thank Derek Fenton, Tanya Koropatnick and other colleagues in the Oceans and Coastal Management Division of Fisheries and Oceans, Canada (DFO) at the Bedford Institute of Oceanography for support and suggestions to this research project. Financial support for the research was through DFO Academic Research Contribution Program entitled Developing Methods for Benthic Habitat Mapping of MPAs in Atlantic Canada (project agreement #F5299-140076), and the NSERC Canadian Healthy Oceans Network and its partners: Department of Fisheries and Oceans Canada and INREST (representing the Port of Sept-Îles and City of Sept-Îles; NETGP 468437-14, Project 1.2.5).


  1. Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65:2–16. doi: 10.1016/j.isprsjprs.2009.06.004 CrossRefGoogle Scholar
  2. Brown CJ, Collier JS (2008) Mapping benthic habitat in regions of gradational substrata: an automated approach utilising geophysical, geological, and biological relationships. Estuar Coast Shelf Sci 78:203–214. doi: 10.1016/j.ecss.2007.11.026 CrossRefGoogle Scholar
  3. Brown CJ, Smith SJ, Lawton P, Anderson JT (2011) Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar Coast Shelf Sci 92:502–520. doi: 10.1016/j.ecss.2011.02.007 CrossRefGoogle Scholar
  4. Brown CJ, Sameoto JA, Smith SJ (2012) Multiple methods, maps, and management applications: purpose made seafloor maps in support of ocean management. J Sea Res 72:1–13. doi: 10.1016/j.seares.2012.04.009 CrossRefGoogle Scholar
  5. Calvert J, Strong JA, Service M, McGonigle C, Quinn R (2015) An evaluation of supervised and unsupervised classification techniques for marine benthic habitat mapping using multibeam echosounder data. ICES J Mar Sci 72:1498–1513. doi: 10.1093/icesjms/fsu223 CrossRefGoogle Scholar
  6. Cogan CB, Todd BJ, Lawton P, Noji TT (2009) The role of marine habitat mapping in ecosystem-based management. ICES J Mar Sci 66:2033–2042. doi: 10.1093/icesjms/fsp214 CrossRefGoogle Scholar
  7. Collier JS, Brown CJ (2005) Correlation of sidescan backscatter with grain size distribution of surficial seabed sediments. Mar Geol 214:431–449. doi: 10.1016/j.margeo.2004.11.011 CrossRefGoogle Scholar
  8. Copeland A, Edinger E, Devillers R, Bell T, LeBlanc P, Wroblewski J (2013) Marine habitat mapping in support of Marine Protected Area management in a subarctic fjord: Gilbert Bay, Labrador, Canada. J Coast Conserv 17:225–237. doi: 10.1007/s11852-011-0172-1 CrossRefGoogle Scholar
  9. DFO (2012) Conservations Priorities, Objectives, and Ecosystem Assessment Approach for the St. Anns Bank Area of Interest (AOI). DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 3012/034Google Scholar
  10. Diesing M, Green SL, Stephens D, Lark RM, Stewart HA, Dove D (2014) Mapping seabed sediments: comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont Shelf Res 84:107–119. doi: 10.1016/j.csr.2014.05.004 CrossRefGoogle Scholar
  11. Drǎguţ L, Tiede D, Levick SR (2010) ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int J Geogr Inf Sci 24:859–871. doi: 10.1080/13658810903174803 CrossRefGoogle Scholar
  12. Gordon DC Jr, McKeown DL, Steeves G, Vass WP, Bentham K, Chin-Yee M (2007) Canadian imaging and sampling technology for studying benthic habitat and biological communities. In: Todd BJ, Greene HG (eds) Mapping the seafloor for habitat characterization: Geological Association of Canada, Special Paper 47, pp 29–37Google Scholar
  13. Hillman J, Lamarche G, Pallentin A, Pecher I, Gorman A, Schneider von Deimling J (2017) Validation of automated supervised segmentation of multibeam backscatter data from the Chatham Rise, New Zealand. Mar Geophys Res. doi: 10.1007/s11001-016-9297-9 Google Scholar
  14. Hogg OT, Huvenne VA, Griffiths HJ, Dorschel B, Linse K (2016) Landscape mapping at sub-Antarctic South Georgia provides a protocol for underpinning large-scale marine protected areas. Sci Rep 6:33163. doi: 10.1038/srep33163 CrossRefGoogle Scholar
  15. Huvenne VAI, Blondel P, Henriet JP (2002) Textural analyses of sidescan sonar imagery from two mound provinces in the Porcupine Seabight. Mar Geol 189:323–341. doi: 10.1016/S0025-3227(02)00420-6 CrossRefGoogle Scholar
  16. Ismail K, Huvenne VAI, Masson DG (2015) Objective automated classification technique for marine landscape mapping in submarine canyons. Mar Geol 362:17–32. doi: 10.1016/j.margeo.2015.01.006 CrossRefGoogle Scholar
  17. Jordan A, Lawler M, Halley V, Barrett N (2005) Seabed habitat mapping in the Kent Group of islands and its role in marine protected area planning. Aquat Conserv Mar Freshw Ecosyst 15:51–70. doi: 10.1002/aqc.657 CrossRefGoogle Scholar
  18. Kenny AJ, Cato I, Desprez M, Fader G, Schüttenhelm RTE, Side J (2003) An overview of seabed-mapping technologies in the context of marine habitat classification. ICES J Mar Sci 60:411–418. doi: 10.1016/S1054-3139(03)00006-7 CrossRefGoogle Scholar
  19. Lucieer VL (2008) Object-oriented classification of sidescan sonar data for mapping benthic marine habitats. Int J Remote Sens 29:905–921. doi: 10.1080/01431160701311309 CrossRefGoogle Scholar
  20. Lucieer V, Lamarche G (2011) Unsupervised fuzzy classification and object-based image analysis of multibeam data to map deep water substrates, Cook Strait, New Zealand. Cont Shelf Res 31:1236–1247. doi: 10.1016/j.csr.2011.04.016 CrossRefGoogle Scholar
  21. Lucieer V, Lucieer A (2009) Fuzzy clustering for seafloor classification. Mar Geol 264:230–241. doi: 10.1016/j.margeo.2009.06.006 CrossRefGoogle Scholar
  22. Lucieer V, Hill NA, Barrett NS, Nichol S (2013) Do marine substrates “look” and “sound” the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle images. Estuar Coast Shelf Sci 117:94–106. doi: 10.1016/j.ecss.2012.11.001 CrossRefGoogle Scholar
  23. Lurton X, Lamarche G (eds) (2015) Backscatter measurements by seafloor-mapping sonars. Guidelines and Recommendations. 200p.
  24. McGonigle C, Collier JS (2014) Interlinking backscatter, grain size and benthic community structure. Estuar Coast Shelf Sci 147:123–136. doi: 10.1016/j.ecss.2014.05.025 CrossRefGoogle Scholar
  25. McGonigle C, Brown CJ, Quinn R (2010) Operational parameters, data density and benthic ecology: considerations for image-based classification of multibeam backscatter. Mar Geod 33:16–38. doi: 10.1080/01490410903530273 CrossRefGoogle Scholar
  26. Ming D, Li J, Wang J, Zhang M (2015) Scale parameter selection by spatial statistics for GeOBIA: using mean-shift based multi-scale segmentation as an example. ISPRS J Photogramm Remote Sens 106:28–41. doi: 10.1016/j.isprsjprs.2015.04.010 CrossRefGoogle Scholar
  27. Montereale-Gavazzi G, Madricardo F, Janowski L, Kruss A, Blondel P, Sigovini M, Foglini F (2016) Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats: application to the Venice Lagoon, Italy. Estuar Coast Shelf Sci 170:45–60. doi: 10.1016/j.ecss.2015.12.014 CrossRefGoogle Scholar
  28. Neves BM, Du Preez C, Edinger E (2014) Mapping coral and sponge habitats on a shelf-depth environment using multibeam sonar and ROV video observations: Learmonth Bank, northern British Columbia, Canada. Deep Res Part II Top Stud Oceanogr 99:169–183. doi: 10.1016/j.dsr2.2013.05.026 CrossRefGoogle Scholar
  29. Pickrill RA, Kostylev VE (2007) Habitat Mapping and National Seafloor Mapping Strategies in Canada. In: Todd BJ, Greene HG (eds) Mapping the seafloor for habitat characterization: Geological Association of Canada, Special Paper 47, pp 483–495Google Scholar
  30. Pickrill RA, Todd BJ (2003) The multiple roles of acoustic mapping in integrated ocean management, Canadian Atlantic continental margin. Ocean Coast Manag 46:601–614. doi: 10.1016/S0964-5691(03)00037-1 CrossRefGoogle Scholar
  31. Roff JC, Taylor ME, Laughren J (2003) Geophysical approaches to the classification, delineation and monitoring of marine habitats and their communities. Aquat Conserv Mar Freshw Ecosyst 13:77–90. doi: 10.1002/aqc.525 CrossRefGoogle Scholar
  32. Stephens D, Diesing M (2014) A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data. PLoS ONE. doi: 10.1371/journal.pone.0093950 Google Scholar
  33. Wright DJ, Pendleton M, Boulware J, Walbridge S, Gerlt B, Eslinger D, Sampson D, Huntley E (2012) ArcGIS Benthic Terrain Modeler (BTM), v.3.0, Environmental Systems Research Institute, NOAA Coastal Services Center, Massachusetts Office of Coastal Zone Management.
  34. Young M, Carr M (2015) Assessment of habitat representation across a network of marine protected areas with implications for the spatial design of monitoring. PLoS ONE 10:1–24. doi: 10.1371/journal.pone.0116200 Google Scholar
  35. Zajac RN, Lewis RS, Poppe LJ et al (2003) Responses of infaunal populations to benthoscape structure and the potential importance of transition zones. Limnol Oceanogr 48:829–842. doi: 10.2307/3096584 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Myriam Lacharité
    • 1
  • Craig J. Brown
    • 1
  • Vicki Gazzola
    • 1
  1. 1.Applied ResearchNova Scotia Community College, Waterfront CampusDartmouthCanada

Personalised recommendations