Skip to main content
Log in

Crustal structure and mantle transition zone thickness beneath a hydrothermal vent at the ultra-slow spreading Southwest Indian Ridge (49°39′E): a supplementary study based on passive seismic receiver functions

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8′E) close to a hydrothermal vent (49°39′E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at ~9.0 km is the bottom of a layer (2–3 km thick); the Moho (at depth of ~6–7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by ~15 km, the 660 discontinuity is elevated by ~18 km, and a positive thermal anomaly between 182 and 237 K is inferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker ET, Edmonds HN, Michael PJ et al (2004) Hydrothermal venting in magma deserts: the ultraslow-spreading Gakkel and Southwest Indian Ridges. Geochem Geophys Geosyst 5(8):217–228. doi:10.1029/2004GC000712

    Article  Google Scholar 

  • Bina CR, Helffrich GR (1994) Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J Geophys Res 99(B8):15853–15860

    Article  Google Scholar 

  • Cannat M (1993) Emplacement of mantle rocks in the seafloor at mid-ocean ridges. J Geophys Res 98(B3):4163

    Article  Google Scholar 

  • Cannat M, Rommevaux-Jestin C, Sauter D et al (1999) Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). J Geophys Res Solid Earth 104(B10):22825–22843

    Article  Google Scholar 

  • Cannat M, Sauter D, Bezos A et al (2008) Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem Geophys Geosyst 9(4):144–144. doi:10.1029/2007GC001676

    Article  Google Scholar 

  • Chu D, Gordon RG (1999) Evidence for motion between Nubia and Somalia along the Southwest Indian Ridge. Nature 398:64–67

    Article  Google Scholar 

  • Coleman RG (1977) Ophiolites: ancient oceanic lithosphere. Springer, Berlin, pp 229

    Book  Google Scholar 

  • Das Sharma S, Ramesh DS, Li X et al (2010) Response of mantle transition zone thickness to plume buoyancy flux. Geophys J Int 180(1):49–58

    Article  Google Scholar 

  • Dziewonski A, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1(1):75–77

    Article  Google Scholar 

  • Fee D, Dueker K (2004) Mantle transition zone topography and structure beneath the Yellowstone hotspot. Geophys Res Lett 31(18):169–188. doi:10.1029/2004GL020636

    Article  Google Scholar 

  • Foulger GR, Pritchard MJ, Julian BR et al (2000) The seismic anomaly beneath Iceland extends down to the mantle transition zone and no deeper. Geophys J Int 142(3):F1–F5

    Article  Google Scholar 

  • Gu YJ, Dziewonski AM, Agee CB (1998) Global de-correlation of the topography of transition zone discontinuities. Earth Planet Sci Lett 157(1–2):57–67

    Article  Google Scholar 

  • Gurrola H, Minster J, Owens T (1994) The use of velocity spectrum for stacking receiver functions and imaging upper mantle discontinuities. Geophys J Int 117(2):427–440

    Article  Google Scholar 

  • Helffrich G (2000) Topography of the transition zone seismic discontinuities. Rev Geophys 38(38):141–158

    Article  Google Scholar 

  • Humphris SE, Kleinrock MC (1996) Detailed morphology of the TAG active hydrothermal mound: insights into its formation and growth. Geophys Res Lett 23(23):3443–3446

    Article  Google Scholar 

  • Ito E, Takahashi E (1989) Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. J Geophys Res 94(B8):10637–10646

    Article  Google Scholar 

  • Katsura T, Ito E (1989) The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J Geophys Res 94(B11):15663–15670

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER (1991) Travel times for global earthquake location and phase identification. Geophys J Int 105(2):429–465

    Article  Google Scholar 

  • Li JB, Chen YJ (2010) First Chinese OBS experiment at Southwest Indian Ridge. InterRidge News 19:16–28

    Google Scholar 

  • Li J, Jian H, Chen YJ et al (2015) Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge. Geophys Res Lett 42(8):2656–2663. doi:10.1002/2014GL062521

    Article  Google Scholar 

  • Minshull TA, Muller MR, Robinson CJ et al (1998) Is the oceanic Moho a serpentinization front? Geol Soc Lond Spec Publ 148:71–80. doi:10.1144/GSL.SP.1998.148.01.05

    Article  Google Scholar 

  • Niu X, Ruan, A, Li J et al (2015) Along axis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50°E) from a wide-angle seismic experiment. Geochem Geophys Geosyst 16(2):468–485. doi:10.1002/2014GC005645

    Article  Google Scholar 

  • Owens TJ (1984) Determination of crustal and upper mantle structure from analysis of broadband teleseismic P-waveforms. PhD thesis, University of Utah, Salt Lake City

  • Rona PA, Klinkhammer G, Nelsen TA et al (1986) Black smokers, massive sulfides and vent biota at the mid-Atlantic Ridge. Nature 321(6065):33–37

    Article  Google Scholar 

  • Sambridge M (1999a) Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys J Int 138(2):479–494

  • Sambridge M (1999b) Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble. Geophys J Int 138(3):727–746

  • Sambridge M (2001) Finding acceptable models in nonlinear inverse problems using a neighbourhood algorithm. Inverse Prob 17(3):387

    Article  Google Scholar 

  • Sambridge M, Mosegaard K (2002) Monte Carlo methods in geophysical inverse problems. Rev Geophys 40(3):3-1–3-29

    Article  Google Scholar 

  • Sauter D, Patriat P, Rommevauxjestin C et al (2001) The Southwest Indian Ridge between 49°15′E and 57°E: focused accretion and magma redistribution. Earth Planet Sci Lett 192(3):303–317. doi:10.1016/S0012-821X(01)00455-1

    Article  Google Scholar 

  • Si S, Tian X, Zhang H, Teng J (2013) Prevalent thickening and local thinning of the mantle transition zone beneath the Baikal rift zone and its dynamic implications. Sci China Earth Sci 56(1):31–42

    Article  Google Scholar 

  • Suetsugu D, Shinohara M, Araki E et al (2005) Mantle discontinuity depths beneath the West Philippine Basin from receiver function analysis of deep-sea borehole and seafloor broadband waveforms. Bull Seismol Soc Am 95(5):1947–1956

    Article  Google Scholar 

  • Tao C, Li H, Huang W et al (2011) Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chin Sci Bull 56(26):2828–2838. doi:10.1007/s11434-011-4619-4

    Article  Google Scholar 

  • Tao C, Lin J, Guo S et al (2012) First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology 40(1):47–50. doi:10.1130/G32389.1

    Article  Google Scholar 

  • Tauzin B, Debayle E, Wittlinger G (2008) The mantle transition zone as seen by global Pds phases: no clear evidence for a thin transition zone beneath hotspots. J Geophys Res 113(B8):4177–4183. doi:10.1029/2007JB005364

    Article  Google Scholar 

  • Xu W, Zheng T, Zhao L (2011) Mantle dynamics of the reactivating North China Craton: constraints from the topographies of the 410-km and 660-km discontinuities. Sci China Earth Sci 54 (6):881–887

    Article  Google Scholar 

  • Zhang J, Zhao M, Qiu X et al (2013) Seismic phases from the Moho and its implication on the ultraslow spreading ridge. Acta Oceanol Sin 32(12): 75–86

    Article  Google Scholar 

  • Zhao M, Qiu X, Li J et al (2013) Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39′E). Geochem Geophys Geosyst 3(10):4544–4563. doi:10.1002/ggge.20264

    Article  Google Scholar 

  • Zhu L, Kanamori H (2000) Moho depth variation in southern California from teleseismic receiver functions. J Geophys Res 105(B2):2969–2980

    Article  Google Scholar 

  • Zhu J, Lin J, Chen YJ et al (2010) A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge. Geophys Res Lett 37(18):389–390. doi:10.1029/2010GL043542

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the scientists and crew of the DY115-21 cruise (Leg 6) of the R/V “Dayang Yihao”, especially Prof. John Chen, Prof. Xuelin Qiu and Prof. Minghui Zhao. The study is supported by the National Basic Research program of China (Grant 2012CB417301), and the National Natural Science Foundation of China (Grants 91228205, 41576037 and 41176046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Ruan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2220 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, A., Hu, H., Li, J. et al. Crustal structure and mantle transition zone thickness beneath a hydrothermal vent at the ultra-slow spreading Southwest Indian Ridge (49°39′E): a supplementary study based on passive seismic receiver functions. Mar Geophys Res 38, 39–46 (2017). https://doi.org/10.1007/s11001-016-9298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-016-9298-8

Keywords

Navigation