Skip to main content
Log in

Geophysical fingerprints of hyper-extended, exhumed and embryonic oceanic domains: the example from the Iberia–Newfoundland rifted margins

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

This study investigates the magnetic and gravity signatures and associated seismic character of hyper-extended, exhumed and embryonic oceanic domains along the conjugate Iberia–Newfoundland rifted margins. As these margins have been drilled down to basement along their distal parts, it is possible to explore and test different geophysical techniques and interpretations. The aims of this work are twofold: (1) to investigate the location and nature of the two main marginal boundaries—the necking zone and the J Anomaly, which define the limits of major domains; and (2) to map the lateral variations of gravity and magnetic signatures and their detailed correlation with seismic data, from the proximal margin until the first unequivocal oceanic magnetic anomaly (e.g. C34 Anomaly). The results point out that the J Anomaly corresponds to a first-order tectono-magmatic boundary, with a basement formed by polyphase magmatism. It marks the boundary between the exhumed mantle domain, with little magmatic additions, from a domain oceanwards that reveals comparable trends, frequencies and a general magnetic pattern at both sides of the Atlantic, suggesting a coeval evolution. We propose that the domain between the J and the C34 Anomalies was formed by an embryonic spreading system, with intermittent budgets of magma, similar to those observed at very slow spreading systems. The J Anomaly may thus correspond to the location of lithospheric breakup though its origin and the nature of the domain oceanwards remains to be constrained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afilhado A, Matias L, Shiobara H, Hirn A, Mendes-Victor L, Shimamura H (2008) From unthinned continent to ocean: the deep structure of the West Iberia passive continental margin at 38°N. Tectonophysics 458:9–50. doi:10.1016/j.tecto.2008.03.002

    Article  Google Scholar 

  • Amante C, Eakins BW, ETOPO1 (2009) 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp

  • Behn M, Lin J (2000) Segmentation in gravity and magnetic anomalies along the U.S. East Coast passive margin—implications for incipient structure of the oceanic lithosphere. J Geophys Res 105(Bll):25.769–25.790

    Article  Google Scholar 

  • Beslier MO (1996) Data report: seismic line LG12 in the Iberia Abyssal Plain. In: Proceedings of ODP scientific results, 149, pp 737–739

  • Beslier MO, Ask M, Boillot G (1993) Ocean-continent boundary in the Iberia Abyssal Plain from multichannel seismic data. Tectonophysics 218:383–393

    Article  Google Scholar 

  • Boillot G, Winterer EL, Meyer AW et al (1987) Proceedings of ODP initial reports, 103, Ocean Drilling Program, College Station, TX

  • Boillot G, Girardeau J, Kornprobst H (1988) The rifting of the Galicia margin: crustal thinning and emplacement of mantle rocks on the seafloor. In: Proceedings of ocean drilling program scientific results, 103, pp 741–756

  • Bronner A, Sauter D, Manatschal G, Péron-Pinvidic G, Munschy M (2011) Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins. Nat Geosci 4:549–553. doi:10.1038/NGEO1201

    Article  Google Scholar 

  • Bueno V (2004) Diacronismo de eventos no rifte Sul-Atlântico. B Geoci Petrobras 12(2):203–229

    Google Scholar 

  • Cannat M, Manatschal G, Sauter D, Péron-Pinvidic G (2009) Assessing the conditions of continental breakup at magma-poor rifted margins: what can we learn from slow spreading mid-ocean ridges? Comptes Rendus Geosci 341:394–405

    Article  Google Scholar 

  • Chang HK, Kowsman RO, Figueiredo AM, Bender AA (1992) Tectonics and stratigraphy of the East Brazil rift system—an overview. Tectonophysics 213:97–138

    Article  Google Scholar 

  • Chian D, Louden KE, Minshull TA, Whitmarsh RB (1999) Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: 1. Ocean Drilling Program (legs 149 and 173) transect. J Geophys Res 104:7443–7462

    Article  Google Scholar 

  • Cowie L, Kusznir N, Manatschal G (2015) Determining the COB location along the Iberian margin and Galicia Bank from gravity anomaly inversion, residual depth anomaly and subsidence analysis. Geophys J Int 203(2):1355–1372. doi:10.1093/gji/ggv367

    Article  Google Scholar 

  • Cunha T (2008) Gravity anomalies, flexure, and the thermal and mechanical evolution of the West Iberia Margin and its conjugate of Newfoundland. PhD Thesis, Department of Earth Sciences, Oxford University

  • Dean SM, Minshull TA, Whitmarsh RB, Louden KE (2000) Deep structure of the ocean-continent transition in the Southern Iberia Abyssal Plain from seismic refraction profiles: the IAM-9 transect at 40°20′N. J Geophys Res 105:5859–5885

    Article  Google Scholar 

  • Dean SL, Sawyer DS, Morgan JK (2015) Galicia Bank ocean-continent transition zone: New seismic reflection constraints. Earth Planet Sci Lett 413:197–207

    Article  Google Scholar 

  • Divins DL (2003) Total sediment thickness of the world’s oceans & marginal seas. NOAA National Geophysical Data Center, Boulder

    Google Scholar 

  • Eddy DR, Van Avendonk HJA, Shillington DJ (2013) Compressional and shear-wave velocity structure of the continent-ocean transition zone at the eastern Grand Banks, Newfoundland. Geophys Res Lett 40:3014–3020. doi:10.1002/grl.50511

    Article  Google Scholar 

  • Fodor RV, Mckee EH, Asmus HE (1983) K-Ar ages and the opening of the South Atlantic ocean: basaltic rocks from the Brazilian Margins. Mar Geol 54(2):M1–M8

    Article  Google Scholar 

  • Funck TJ, Hopper JR, Larsen HC, Louden KE, Tucholke BE, Holbrook WS (2003) Crustal structure of the ocean-continent transition at Flemish Cap: seismic refraction results. J Geophys Res 108(B11):2531

    Article  Google Scholar 

  • Geldmacher J, van den Bogaard JP, Hoernle K, Schminke HU (2000) The 40 Ar/39 Ar age dating of the Madeira Archipelago and hotspot track (eastern North Atlantic). Geochem Geophys Geosyst 1:2

    Article  Google Scholar 

  • Geldmacher J, Hoernle K, Klugel A, van den Bogaard P, Wombacher F, Berning B (2006) Origin and geochemical evolution of the Madeira-Tore Rise (eastern North Atlantic). J Geophys Res 111:B09206. doi:10.1029/2005JB003931

    Article  Google Scholar 

  • Gillard M, Autin J, Manatschal G, Sauter D, Munschy M, Schaming M (2015) Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian-Antarctic magma-poor rifted margins: constraints from seismic observations. Tectonics. doi:10.1002/2015TC003850

    Google Scholar 

  • Grange M, Scharer U, Cornen G, Girardeau J (2007) Time–space migration of melting within the East Atlantic plume and magmatism of Portugal: U–Pb ages and Pb–Sr–Hf isotopes. Geochim Cosmochim Acta 71(supplement 1):A351

    Google Scholar 

  • Hart SR, Blusztajn J (2006) Age and geochemistry of the mafic sills, ODP Site 1276, Newfoundland margin. Chem Geol 235(3–4):222–237. doi:10.1016/j.chemgeo.2006.07.001

    Article  Google Scholar 

  • Henning AT, Sawyer DS, Templeton DS (2004) Exhumed upper mantle within the ocean-continent transition of the Northern West Iberia margin: evidence from prestack depth migration and total tectonic subsidence analyses. J Geophys Res 109:B05103. doi:10.1029/2003JB002526

    Article  Google Scholar 

  • Hopper JR, Funck T, Tucholke BE, Larsen HG, Holbrook WS, Louden KE, Shillington D, Lau H (2004) Continental breakup and the onset of ultraslow seafloor spreading off Flemish Cap on the Newfoundland rifted margin. Geology 32:93–96. doi:10.1130/G19694.1

    Article  Google Scholar 

  • Hopper JR, Funck T, Tucholke BE, Louden KE, Holbrook WS, Larsen HC (2006) A deep seismic investigation of the Flemish Cap margin: implications for the origin of deep reflectivity and evidence for asymmetric break-up between Newfoundland and Iberia. Geophys J Int 164:501–515

    Article  Google Scholar 

  • Jagoutz O, Muntener O, Manatschal G, Rubatto D, Péron-Pinvidic G, Turrin DB, Villa IM (2007) The rift-to-drift transition in the North Atlantic: a stuttering start of the MORB machine? Geology 35:1087–1090. doi:10.1130/G23613A.1

    Article  Google Scholar 

  • Karner G, Driscoll NW, McGinnis JP, Brunbaugh WD, Cameron NR (1997) Tectonic significance of syn-rift sediment packages across the Gabon-Cabinda continental margin. Mar Pet Geol 14(l/8):973–1000

    Article  Google Scholar 

  • Lau KWH, Louden KE, Deemer S, Hall J, Hopper JR, Tucholke BE, Holbrook WS, Larsen HC (2006a) Crustal structure across the Grand Banks-Newfoundland Basin Continental Margin: I. Results from a seismic reflection profile. Geophys J Int 167(1):157–170. doi:10.1111/j.1365-246X.2006.02989.x

    Article  Google Scholar 

  • Lau KWH, Louden KE, Funck T, Tucholke BE, Holbrook WS, Hopper JR, Larsen HC (2006b) Crustal structure across the Grand Banks-Newfoundland Basin Continental Margin: I. Results from a seismic refraction profile. Geophys J Int 167:127–156. doi:10.1111/j.1365-246X.2006.02988.x

    Article  Google Scholar 

  • Lavier L, Manatschal G (2006) A mechanism to thin the continental lithosphere at magma-poor margins. Nature 440:324–328. doi:10.1038/nature04608

    Article  Google Scholar 

  • Manatschal G (2004) New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int J Earth Sci 93:432–466. doi:10.1007/s00531-004-0394-7

    Article  Google Scholar 

  • Merle R, Schärer U, Girardeau J, Cornen G (2006) Cretaceous seamounts along the continent-ocean transition of the Iberian margin: U–Pb ages and Pb–Sr–Hf isotopes. Geochim Cosmochim Acta 70:4950–4976. doi:10.1016/j.gca.2006.07.004

    Article  Google Scholar 

  • Merle R et al (2009) Evidence of multi-phase Cretaceous to Quaternary alkaline magmatism on Tore Madeira Rise and neighboring seamounts from 40Ar = 39Ar ages. J Geol Soc 166:879–894

    Article  Google Scholar 

  • Miles PR, Verhoef J, Macnab R (1996) Compilation of magnetic anomaly chart West of Iberia. In: Whitmarsh RB, Sawyer D, Klaus A, Masson DG (eds) Proceedings of the ocean drilling program scientific results, vol 149. Ocean Drilling Program, College Station, TX, pp 659–663. doi:10.2973/odp.proc.sr.149.242.1996

  • Miller HG, Singh V (1994) Potential field tilt—a new concept for the location of potential field sources. J Appl Geophys 32:213–217. doi:10.1016/0926-9851(94)90022-1

    Article  Google Scholar 

  • Minshull TA, Dean SM, Whitmarsh RB, Russell SM, Louden KE, Chian D, Discovery 215 Group (1998) Deep structure in the vicinity of the ocean-continent transition zone under the southern Iberia Abyssal Plain. Geology 26(8):743–746.

  • Mizusaki AMP, Petrini R, Bellieni G, Comin-Chiaramonti P, Dias J, De Min A, Piccirillo EM (1992) Basalt magmatism along the passive continental margin of SE Brazil (Campos basin). Contrib Mineral Petrol 111:143–160

    Article  Google Scholar 

  • Mohriak WU, Bassetto M, Vieira IS (1998) Crustal architecture and tectonic evolution of the Sergipe/Alagoas and Jacuípe basins, offshore northeastern Brazil. Tectonophysics 288:199–220

    Article  Google Scholar 

  • Muller RD, Roest WR, Royer J-Y, Gahagan LM, Sclater JG (1997) Digital isochrons of the world’s ocean floor. J Geophys Res 102:3211–3214. doi:10.1029/96JB01781

    Article  Google Scholar 

  • Nirrengarten M, Gernigon L, Manatschal G (2014) Lower crustal bodies in the Møre volcanic rifted margin: geophysical determination and geological implications, Tectonophysics 636:143–157. ISSN 0040-1951. 10.1016/j.tecto.2014.08.004

  • Pérez-Gussinyé M, Ranero CR, Reston TJ (2003) Mechanisms of extension at nonvolcanic margins: evidence from the Galicia interior basin, west of Iberia. J Geophys Res 108(B5):2245. doi:10.1029/2001JB000901

    Article  Google Scholar 

  • Péron-Pinvidic G, Manatschal G (2009) The final rifting evolution at deep magma-poor passive margins from Iberia–Newfoundland: a new point of view. Int J Earth Sci 98:1581–1597. doi:10.1007/s00531-008-0337-9

    Article  Google Scholar 

  • Péron-Pinvidic G, Shillington DJ, Tucholke B (2010) Characterization of sills associated with the U reflection on the Newfoundland margin: evidence for widespread early post-rift magmatism on a magma-poor rifted margin. Geophys J Int 182(1):113–136. doi:10.1111/j.1365-246X.2010.04635.x

    Google Scholar 

  • Pickup SLB, Whitmarsh RB, Fowler CMR, Reston TJ (1996) Insight into the nature of the ocean-continent transition off West Iberia from a deep multichannel seismic reflection profile. Geology 24:1079–1082

    Article  Google Scholar 

  • Pinheiro LM, Whitmarsh RB, Miles PR (1992) The ocean-continent boundary off the western margin of Iberia. Part II: crustal structure in the Tagus Abyssal Plain. Geophys J Int 109:106–124

    Article  Google Scholar 

  • Quesnel Y, Catalan M, Ishihara T (2009) A new global marine magnetic anomaly data set. J Geophys Res 114:B04106. doi:10.1029/2008JB006144

    Article  Google Scholar 

  • Reid ID (1994) Crustal structure of a nonvolcanic rifted margin east of Newfoundland. J Geophys Res 99:15161–15180

    Article  Google Scholar 

  • Reston TJ (2009) The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: a synthesis. Tectonophysics 468:6–27. doi:10.1016/j.tecto.2008.09.002

    Article  Google Scholar 

  • Reston TJ, Pérez-Gussinyé M (2007) Lithospheric extension from rifting to continental breakup at magma-poor margins: rheology, serpentinisation and symmetry. Int J Earth Sci 96:1033–1046. doi:10.1007/s00531-006-0161-z

    Article  Google Scholar 

  • Reston TJ, Krawczyk CM, Klaeschen D (1996) The S reflector west of Galicia (Spain): evidence from prestack depth migration for detachment faulting during continental breakup. J Geophys Res 101(B4):8075–8091

    Article  Google Scholar 

  • Russell SM, Whitmarsh RB (2003) Magmatism at the west Iberia non-volcanic rifted continental margin: evidence from analyses of magnetic anomalies. Geophys J Int 154:706–730

    Article  Google Scholar 

  • Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res 114:B01411. doi:10.1029/2008JB006008

    Article  Google Scholar 

  • Sawyer DS, Whitmarsh RB, Klaus A et al (1994) Proceedings of ODP initial reports, 149, Ocean Drilling Program, College Station, TX

  • Seton M, Müller RD, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M (2012) Global continental and ocean basin reconstructions since 200 Ma. Earth Sci Rev 113:212–270

    Article  Google Scholar 

  • Shillington DJ, Holbrook WS, Van Avendonk HJA, Tucholke BE, Hopper JR, Louden KE, Larsen HC, Nunes GT (2006) Evidence for asymmetric nonvolcanic rifting and slow incipient oceanic accretion from seismic reflection data on the Newfoundland margin. J Geophys Res 111:B09402. doi:10.1029/2005JB003981

    Google Scholar 

  • Shipboard Scientific Party (1998) Leg 173 introduction. In: Whitmarsh RB, Beslier MO, Wallace PJ et al (eds) Proceedings of ODP, initial reports, 173. Ocean Drilling Program, College Station, TX, pp 7–23

  • Shipboard Scientific Party (2004) Leg 210 summary. In: Tucholke BE, Sibuet J-C, Klaus A et al (eds) Proceedings of ODP, initial reports, 210. Ocean Drilling Program, College Station, TX, pp 1–78

  • Sibuet J-C (1992) Formation of non-volcanic passive margins: a composite model applies to the conjugate Galicia and southeastern Flemish Cap margins. Geophys Res Lett 19(8):769–772

    Article  Google Scholar 

  • Sibuet J-C, Srivastava SP, Enachescu ME, Karner GD (2007a) Lower cretaceous motion of the Flemish Cap with respect to North America: implications on the formation of Orphan Basin and SE Flemish Camp/Galicia Bank conjugate margins. In: Karner GD, Manatschal G, Pinheiro LM (eds) Imaging, mapping, and modeling extensional processes and systems. Columbia Univ. Press, New York

    Google Scholar 

  • Sibuet J-C, Srivastava S, Manatschal G (2007b) Exhumed mantle-forming transitional crust in the Newfoundland Iberia rift and associated magnetic anomalies. J Geophys Res 112:B06105. doi:10.1029/2005JB003856

    Article  Google Scholar 

  • Srivastava SP, Tapscot CP (1986) Plate kinematics of the North Atlantic. In: Vogt PR, Tucholke BE (eds) He geology of North America, vol M. The Western North Atlantic Region, Washington, pp 379–404

    Google Scholar 

  • Srivastava SP, Sibuet J-C, Cande S, Roest WR, Reid IR (2000) Magnetic evidence for slow seafloor spreading during the formation of the Newfoundland and Iberian margins. Earth Planet Sci Lett 182:61–76

    Article  Google Scholar 

  • Stanton N, Ponte-Neto C, Bijani R, Masini E, Fontes S, Flexor J-M (2014) A geophysical view of the Southeastern Brazilian margin at Santos Basin: insights into rifting evolution. J S Am Earth Sci 55:141–154

    Article  Google Scholar 

  • Sullivan KD (1983) The Newfoundland Basin: ocean-continent boundary and Mesozoic seafloor spreading history. Earth Planet Sci Lett 62:321–339

    Article  Google Scholar 

  • Sullivan KD, Keen CE (1978) On the nature of the crust in the vicinity of the southeast Newfoundland Ridge. Can J Earth Sci 15:1462–1471

    Article  Google Scholar 

  • Sutra E, Manatschal G (2012) How does the continental crust thin in a hyper-extended rifted margin? Insights from the Iberia margin. Geology 40:139–142. doi:10.130/G32786.1

    Article  Google Scholar 

  • Sutra E, Manatschal G, Mohn G, Unternehr P (2013) Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem Geophys Geosyst 14:2575–2597. doi:10.1002/ggge.20135

    Article  Google Scholar 

  • Talwani M, Worzel JL, Landisman M (1959) Rapid Gravity Computations for two-dimensional bodies with application to the Mendocine Submarine Fracture Zone. J Geophys Res 64:49–61

    Article  Google Scholar 

  • Torsvik TH, Rousse S, Labails C, Smethurst MA (2009) A new scheme for the opening of the South Atlantic Ocean and dissection of an Aptian Salt Basin. Geophys J Int 177:1315–1333

    Article  Google Scholar 

  • Tucholke B, Ludwig W (1982) Structure and origin of the J Anomaly Ridge, Western North Atlantic Ocean. J Geophys Res B87:9389–9407

    Article  Google Scholar 

  • Tucholke BE, Sibuet J-C (2007) Proceedings of the ocean drilling program, scientific results, vol 210. In: Tucholke BE, Sibuet J-C, Klaus A (eds) Ocean Drilling Program, pp 1–56

  • Tucholke BE, Sawyer DS, Sibuet JC (2007) Breakup of the Newfoundland-Iberia rift. Geol Soc Lond Spec Publ 282(1):9–46. doi:10.1144/sp282.2

    Article  Google Scholar 

  • Van Avendonk HJA, Holbrook WS, Nunes GT, Shillington DJ, Tucholke BE, Louden KE, Larsen HC, Hopper JR (2006) Seismic velocity structure of the rifted margin of the eastern Grand Banks of Newfoundland, Canada. J Geophys Res 111:B11404. doi:10.1029/2005JB004156

    Google Scholar 

  • Van Avendonk H, Lavier LL, Shillington DJ, Manatschal G (2009) Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland. Tectonophysics 468:131–148. doi:10.1016/j.tecto.2008.05.030

    Article  Google Scholar 

  • Van der Voo R (1990) Phanerozoic paleomagnetic poles from Europe and North America and comparison with continental reconstructions. Rev Geophys 18:167–206

    Google Scholar 

  • Welford JK, Smith JA, Hall J, Deemer S, Srivastava SP, Sibuet J-C (2010) Structure and rifting evolution of the northern Newfoundland Basin from Erable multichannel seismic reflection profiles across the southeastern margin of Flemish Cap. Geophys J Int 180:976–998

    Article  Google Scholar 

  • Whitmarsh RB, Miles PR (1995) Models of the development of the West Iberia rifted continental margin at 40°30′N deduced from surface and deep-tow magnetic anomalies. J Geophys Res 100:3789–3806

    Article  Google Scholar 

  • Whitmarsh RB, Sawyer DS (1996) The ocean/continent transition beneath the Iberla Abyssal Plain and contmental-nftmgto seafloor-spreadinpgro cessesin. In: Proceedings of ocean drilling program, scientific results, 149, pp 713–736

  • Whitmarsh RB, Wallace PJ (2001) The rift-to-drift development of the west Iberia nonvolcanic continental margin: a summary and review of the contribution of Ocean Drilling Program Leg 173. In: Beslier M-O, Whitmarsh RB, Wallace PJ, Girardeau J (eds) Proceedings of ODP, scientific results, 173. Ocean Drilling Program, College Station, TX, pp 1–36

  • Whitmarsh RB, Miles PR, Pinheiro M (1990) The seismic velocity structure of some NE Atlantic continental rise sediments; a lithification index? Geophys J Int 101:367–378

    Article  Google Scholar 

  • Whitmarsh RB, Pinheiro LM, Miles PR, Recq M, Sibuet J-C (1993) Thin crust at the western Iberia ocean-continent transition and ophiolites. Tectonics 12(5):1230–1239

    Article  Google Scholar 

  • Whitmarsh RB, Sawyer DS, Klaus A, Masson DG (Eds) (1996) Proceedings of the ocean drilling program scientific results, vol 149. Ocean Drilling Program, College Station, TX

  • Whitmarsh RB, Beslier M-O, Wallace PJ (1998) Return to Iberia. In: Proceedings of the ocean drilling program, initial reports, 173, Ocean Drilling Program, College Station, TX

  • Zelt CA, Sain K, Naumenko JV, Sawyer DS (2003) Assessment of crustal velocity models using seismic refraction and reflection tomography. Geophys J Int 153:609–626

    Article  Google Scholar 

  • Zhao X (2001) Paleomagnetic and rock magnetic results from serpentinized peridotites beneath the Iberia Abyssal Plain. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-volcanic rifting of continental margins: a comparison of evidence from land and sea. Geological Society of Special Publications, vol 187, pp 209–234

  • Zhao X, Turrin BD, Jackson M, Solheid P (2001) Data report: paleomagnetic and rock magnetic characterization of rocks recovered from Leg 173 sites. In: Beslier M-O, Whitmarsh RB, Wallace PJ, Girardeau J (eds) Proceedings of ODP, scientific results, 173, pp 1–34

  • Zhao X, Galbrun B, Delius H, Liu Q (2007) Paleolatitude inferred from Cretaceous sedimentary and igneous cores recovered from Leg 210, Newfoundland margin. In: Tucholke BE, Sibuet J-C, Klaus A (eds) Proceedings of ODP, scientific results, 210. Ocean Drilling Program, College Station, TX, pp 1–37. doi:10.2973/odp.proc.sr.210.114.2007

Download references

Acknowledgments

The authors wish to thank Petrobras S.A. for financing the Postdoc of Natasha Stanton and Emmanuel Masini for the fruitful discussions. We wish to thank L. Magnavita and an anonymous reviewer for the important constructive comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha Stanton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanton, N., Manatschal, G., Autin, J. et al. Geophysical fingerprints of hyper-extended, exhumed and embryonic oceanic domains: the example from the Iberia–Newfoundland rifted margins. Mar Geophys Res 37, 185–205 (2016). https://doi.org/10.1007/s11001-016-9277-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-016-9277-0

Keywords

Navigation