Advertisement

Marine Geophysical Research

, Volume 35, Issue 4, pp 361–378 | Cite as

Tsunami mapping in the Gulf of Guayaquil, Ecuador, due to local seismicity

  • M. Ioualalen
  • T. Monfret
  • N. Béthoux
  • M. Chlieh
  • G. Ponce Adams
  • J.-Y. Collot
  • C. Martillo Bustamante
  • K. Chunga
  • E. Navarrete
  • G. Montenegro
  • G. Solis Gordillo
Original Research Paper

Abstract

The North-Andean subduction zone generates recurrent tsunamigenic earthquakes. The seismicity is usually considered to be segmented because of different specific morphological features of the Nazca Plate driving the subduction motion. Most of the recent powerful earthquakes in the margin were located in its northern part. To the south, the region of the Gulf of Guayaquil, only (undocumented) three events in 1901, 1933 and 1953 were possibly powerful and tsunamigenic. Here we are interested in the tsunami signature due to local seismicity. Two realistic earthquake scenarios (Mw = 7 and Mw = 7.5) taking into account the hypothesized segmentation of the area are proposed. Their return period is supposed to be intra-centenary. Then, a larger magnitude unsegmented Mw = 8 scenario is computed (half-millennium return period). The interior of the Gulf of Guayaquil as well as the Santa Elena Peninsula are sheltered areas including numerous coastal infrastructures and the city of Guayaquil. It is predicted that potential flooding would occur at high tide only for both segmented and unsegmented scenarios in (1) south of Playas with however only a few centimeters of wave height and (2) Chanduy (a few meters). Both are important zones of coastal farms.

Keywords

Tsunami Gulf of Guayaquil Local seismicity Return period 

Notes

Acknowledgments

The authors wish to acknowledge with thanks the Editor Amy Draut and Dr. George Pararas-Carayannis along with two anonymous reviewers for their efforts and comments which contributed to a substantial improvement of the first draft manuscript. We acknowledge the support of the French Agence Natonale pour la Recherche, ANR, under the project REMAKE.

References

  1. Ammon CJ, Ji C, Thio H-K, Robinson D, Ni S, Hjorleifsdottir V, Kanamori H, Lay T, Das S, Helmberger D, Ichinose G, Polet J, Wald D (2005) Scaling relations of earthquake source parameter estimates with special focus on subduction environment, rupture process of the 2004 Sumatra-Andaman Earthquake. Science 308 (5725)1133–1139. ISSN 0036-8075Google Scholar
  2. Beck S, Ruff L (1989) Great earthquake and subduction along the Peru trench. Phys Earth Planet Inter 57(3–4):199–224CrossRefGoogle Scholar
  3. Blaser L, Krüger F, Ohrnberger M, Scherbaum M (2010) Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull Seismol Soc Am 100:2914–2916CrossRefGoogle Scholar
  4. Calahorrano A (2005) Structure de la Marge du Golfe de Guayaquil (Equateur) et propriétés physiques du chenal de subduction, à partir des donnés de sismique marine, réflexion et réfraction. Ph.D document, Université Pierre et Marie Curie-Paris 6Google Scholar
  5. Calahorrano A, Sallares V, Collot J-Y, Sage F, Ranero CR (2008) Nonlinear variations of the physical properties along the southern Ecuador subduction channel: results from depth-migrated seismic data. Earth Planet Sci Lett 267:453–467CrossRefGoogle Scholar
  6. Carena S (2011) Subducting-plate topography and nucleation of great and giant earthquakes along the south american trench. Seismol Res Lett 82(5). doi: 10.1785/gssrl.82.5.629
  7. Chlieh M, Avouac J-P, Hjorleifsdottir V, Song T-RA, Ji C, Sieh K, Sladen A, Hebert H, Prawirodirdjo L, Bock Y, Galetzka J (2007) Coseismic and afterslip of the great Mw 9.15 Sumatra-Andaman earthquake of 2004. Bull Seismol Soc Am 97:S152–S173CrossRefGoogle Scholar
  8. Chlieh M, Perfettini H, Tavera H, Avouac J-P, Remy D, Nocquet J-M, Rolandone F et al (2011) Interseismic coupling and seismic potential along the Central Andes subduction zone. J Geophys Res 116:B12405. doi: 10.1029/2010JB008166 CrossRefGoogle Scholar
  9. Collot J-Y, Charvis P, Gutscher M-A, Operto S (2002) Exploring the Ecuador-Colombia active Margin and interplate seismogenic zone. Eos Trans Am Geophys. Union 83(17), 185, 189–190Google Scholar
  10. Collot J-Y, Michaud F, Legonidec Y, Calahorrano A, Sage F, Alvarado A, y el personal cientifico y técnico del INOCAR (2006) Mapas del margen continental centro y sur de Ecuador: Batimetria, relieve, reflectividad acústica e interpretación geológica. Publicación IOA-CVM-04-POSTGoogle Scholar
  11. Collot J-Y, Michaud F, Alvarado A, Marcaillou B, Sosson M, Ratzov G, Migeon S, Calahorrano A, Pazmino A (2009) Visión general de la morfología submarina del margen convergente de Ecuador-Sur de Colombia: implicaciones sobre la transferencia de masa y la edad de la subducción de la Cordillera de Carnegie. In: Collot J-Y, V. Sallares, and A. Pazmiño, Publicacion CNDM-INOCAR-IRD, PSE001-09 (eds) Geologia y Geofisica Marina y Terestre del Ecuador desde la costa continental hasta las islas Gapapagos, Guayaquil, Ecuador, pp 47–74Google Scholar
  12. Contreras-Reyes E, Carrizo D (2011) Control of high oceanic features and subduction channel on earthquake ruptures along the Chile-Peru subduction zone. Phys Earth Planet Inter 186:49–58. doi: 10.1016/j.pepi.2011.03.002
  13. Dumont J-F, Santana E, Vilema W, Pedoja K, Ordonez M, Cruz M, Jimenez N, Zambrano I (2005) Morphological and microtectonic analysis of quaternary deformation from Puna and Santa Clara Islands, Gulf of Guyaquil, Ecuador (South America). Tectonophysics 339:331–350CrossRefGoogle Scholar
  14. Ego F, Sebrier M, Lavenu A, Yepes H, Eguez A (1996) Quaternary state of stress in the northern Andes and the restraining bend model for the Ecuadorian Andes. Tectonophysics 259:101–116CrossRefGoogle Scholar
  15. Espinoza J (1992) Terremotos tsunamigénicos en el Ecuador, Acta Oceanografica del Pacifico. INOCAR 25, 66–82. Geologica del Peru, 32(2), 225–238. http://hdl.handle.net/1834/2181
  16. ETOPO-2 (2001) (World Data Center for Marine Geology and Geophysics. 2-minute gridded global relief data) (2001). National Geophysical Data Center (NGDC), NOAA Satellite and Information Service. http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html
  17. Font Y, Segovia M, Vaca S, Theunissen T (2013) Seismicity patterns along the Ecuadorian subduction zone: new constraints from earthquake location in a 3-D a priori velocity model. Geophys. J Int doi:  10.1093/gji/ggs1083
  18. Graindorge D, Collahorrano A, Charvis P, Collot J-Y, Béthoux N (2004) Deep structure of the Ecuador convergent margin and the carnegie ridge, possible consequence on great earthquakes recurrence interval. Geophys Res Lett 31:L04603Google Scholar
  19. Gutscher M-A, Malavieille J, Lallemand S, Collot J-Y (1999) Tectonic segmentation of the North Andean margin: impact of the carnegie ridge collision. Earth Planet Sci Lett 168:255–270CrossRefGoogle Scholar
  20. Hanks T, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350CrossRefGoogle Scholar
  21. Ioualalen M, Asavanant J, Kaewbanjak N, Grilli ST, Kirby JT, Watts P (2007) Modeling the 26 december 2004 Indian Ocean tsunami: case study of impact in Thailand. J Geophys Res 112:C07024. doi: 10.1029/2006JC003850 Google Scholar
  22. Ioualalen M, Ratzov G, Collot J-Y, Sanclemente E (2011) The tsunami signature on a submerged promontory: the case study of the Atacames Promontory. Ecuador Geophys J Int 184(2):680–688CrossRefGoogle Scholar
  23. Ioualalen M, Perfettini H, Yauri Condo S, Jimenez C, Tavera H (2012) Tsunami modeling to validate slip models of the 2007 Mw8.0 Pisco earthquake, Central Peru. Pure Appl Geophys. doi: 10.1007/s00024-012-0608-z
  24. Kanamori H (1981) The nature of seismicity patterns before large earthquakes. In: Ewing M (ed) Series 4: earthquake prediction—an international review, AGU geophys. Washington D.C, Mono., pp 1–19Google Scholar
  25. Kanamori H, McNally KC (1982) Variable rupture mode of the subduction zone along the Ecuador-Colombia coast. Bull Seismol Soc Am 72:1241–1253Google Scholar
  26. Kelleher J (1972) Rupture zones of large South American earthquakes and some predictions. J Geophys Res 77:2087–2103CrossRefGoogle Scholar
  27. Kowalik Z, Proshutinsky A (2010) Tsunami tide interactions: a cook inlet case study. Cont Shelf Res 30:633–642CrossRefGoogle Scholar
  28. Kowalik Z, Proshutinsky T, Proshutinsky A (2006) Tide-Tsunami interactions. Sci Tsunami Hazards 24(4):242Google Scholar
  29. Lay T, Ammon CJ, Kanamori H, Xue L, Kim MJ (2011) Possible large near-trench slip during the great 2011 Tohoku (Mw 9.0) earthquake. Earth Planet Sci Lett 63. doi: 10.5047/eps.xxxx.xx.xxx
  30. Lockridge PA (1984) The criteria for Identification of tsunami events likely to produce far-field damage, A data application. In : Brennan AM, Lander JF (Eds.) Second UJNR Tsunami Workshop, Honolulu, Hawaii, November 1990, pp 43–50Google Scholar
  31. Mendoza C, Dewey JW (1984) Seismicity associated with the great Colombia-Ecuador earthquakes of 1942, 1968 and 1979: implications for barrier models of earthquake rupture. Bull Seismol Soc Am 74:577–593Google Scholar
  32. Moscoso E, Grevemeyer I, Contreras-Reyes E, Flueh ER, Dzierma Y, Rabbel W, Thorwart M (2011) Revealing the deep structure and rupture plane of the 2010 Maule, Chile earthquake (Mw = 8.8) using wide angle seismic data. Earth Planet Sci Lett 307:147–155CrossRefGoogle Scholar
  33. Nocquet J-M, Mothes P (2009) Géodésie, géodynamique et cycle sismique en Equateur. Pub INOCAR, Ecuador In geologia y sismicitad en la zona costera del Ecuador, SpecGoogle Scholar
  34. Nocquet J-M, Villegas-Lanza JC, Chlieh M, Mothes PA, Rolandone F, Jarrin P, Cisneros D, Alvarado A, Audin L, Bondoux F, Martin X, Font Y, Régnier M, Vallée M, Tran T, Beauval C, Maguiña Mendoza JM, Martinez W, Tavera H, Yepes H (2014) Motion of continental slivers and creeping subduction in the northern Andes. Nat Geosci. Published online: 2 March, 2014. doi: 10.1038/NGEO2099
  35. Okada S (1985) Surface displacement due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154Google Scholar
  36. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82:1018–1040Google Scholar
  37. Pararas-Carayannis G (2012) Potential of Tsunami generation along the Colombia/Ecuador Subduction Margin and the Dolores-Guayaquil mega-thrust. Sci Tsunami Hazards 31(3):209–230Google Scholar
  38. Pedoja K, Dumont J-F, Lamothe M, Ortlieb L, Collot J-Y, Ghaleb B, Auclair M, Alvarez V, Labrousse B (2006) Plio-Quaternary uplift of the Manta Peninsula and La Plata Island and the subduction of the Carnegie Ridge, central coast of Ecuador. J S Am Earth Sci 22:1–21CrossRefGoogle Scholar
  39. Savage JC (1983) A dislocation model of strain accumulation and release at a subduction zone. J Geophys Res 88:4984–4996. doi: 10.1029/JB088iB06p04984 CrossRefGoogle Scholar
  40. Segovia M (2001) El sismo de Bahia del 4 de Augusto de 1998: Caracterizacion del mecanismo de ruptura y analisis de la sismicidad en la zona costera. (Titulo de Ingeniera Geologia tesis): Escuela Politecnica Nacional, Quito, EcuadorGoogle Scholar
  41. Simons M, Minson SE, Sladen A, Ortega F, Jiang J, Owen S., Meng L, Ampuerto J-P, Wei S, Chu R, Heimberger DV, Kanamori H, Hetland E, Moore AW, Webb FK (2011) The 2011 Magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries. Science 332. doi: 10.1126/science.1206731
  42. Souris M (2002) República del Ecuador: modelo numérico del relieve, escala 1:2500000, Modèle numérique calculé à partir des cartes topographiques de l’ IGM (1:50000, 1:100000). IGM Editors, Quito, EcuadorGoogle Scholar
  43. Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seism Res Lett 81:941–950CrossRefGoogle Scholar
  44. Trenkamp R, Kellogg JN, Freymueller JT, Hector Mora P (2002) Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J S Am Earth Sci 15:157–171CrossRefGoogle Scholar
  45. Vallée M, Nocquet J-M, Battaglia J, Font Y, Segovia M, Régnier M, Mothes P, Jarrin P, Cisneros D, Vaca S, Yepes H, Martin X, Béthoux N, Chlieh M (2013) Intense interface seismicity triggered by a shallow slow-slip event in the Central-Ecuador subduction zone. J Geophys Res Solid Earth 118(6):2965–2981CrossRefGoogle Scholar
  46. Wei G, Kirby JT (1995) A time-dependent numerical code for extended Boussinesq equations. J Wtrwy Port Coast Ocean Eng 121:251–261CrossRefGoogle Scholar
  47. Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A fully nonlinear Boussinesq model for free surface waves. Part 1: highly nonlinear unsteady waves. J Fluid Mech 294:71–92CrossRefGoogle Scholar
  48. Winter T, Avouac J-P, Lavenu A (1993) Late Quaternary kinematics of the Pallatanga strike-slip fault (Central Ecuador) from topographic measurements of displaced morphologic features. Geophys J Int 115:905–920CrossRefGoogle Scholar
  49. Witt C, Bourgois J, Michaud F, Ordonez M, Jimenez N, Sosson M (2006) Development of the Gulf of Guayaquil (Ecuador) during the quaternary as an effect of the North Andean block tectonic escape. Tectonics 25(3):22CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. Ioualalen
    • 1
    • 2
  • T. Monfret
    • 1
  • N. Béthoux
    • 1
  • M. Chlieh
    • 1
  • G. Ponce Adams
    • 1
    • 2
  • J.-Y. Collot
    • 1
  • C. Martillo Bustamante
    • 1
    • 2
  • K. Chunga
    • 3
  • E. Navarrete
    • 2
  • G. Montenegro
    • 4
  • G. Solis Gordillo
    • 2
  1. 1.Géoazur, Institut de Recherche pour le Développement, IRDUMR Géoazur 7329, CNRS-IRD-UNS-OCAValbonneFrance
  2. 2.Escuela Superior Politécnica del Litoral (ESPOL), Facultad de Ingeniera en Ciencias de la Tierra, FICTGuayaquilEcuador
  3. 3.Escuela de Ciencias Geológicas y Ambientales, Facultad de Ciencias NaturalesUniversidad de GuayaquilGuayaquilEcuador
  4. 4.Gerencia de Exploraciòn y Desarrollo de EP PetroproducciónGuayaquilEcuador

Personalised recommendations