Controls on crustal accretion along the back-arc East Scotia Ridge: constraints from bathymetry and gravity data

Abstract

This study investigates crustal accretion processes along the East Scotia Ridge (ESR), an intermediate-rate back-arc spreading center with ten segments (E1–E10) that strike north–south. Mantle Bouguer anomaly (MBA) was calculated for the ESR region using satellite-derived and shipboard data sources. De-trended MBA (MBAdet) was determined by removing a residual plane from the MBA map, and ΔMBAdet was defined as the along-segment change in MBAdet. ΔMBAdet, as well as segment-averaged values of Na8, Fe8, and 87Sr/86Sr obtained from the published literature, generally appear to be better correlated with distsst (the distance from each segment center to the nearest point on the South Sandwich Trench) than with spreading rate. For each of the northern segments E2 through E6, MBAdet has a central low. MBAdet values also form a broad, longer-wavelength low from segments E2 through E6. Generally speaking, these findings are consistent with earlier studies such as Livermore et al. (Earth Planet Sci Lett 150:261–275, 1997) in suggesting that the region around segment E2 is a center for focused accretion along the ESR. On the other hand, southern segments E7 and E8 have central MBAdet highs, and MBAdet decreases somewhat linearly from segment E7 to E9, notwithstanding intrasegment variations. The quasi-linear MBAdet trend along these ESR segments is similar to that observed for the southernmost Lau spreading centers (e.g., Martinez and Taylor in Nature 416:417–420, 2002). Overall, plate boundary geometry and three-dimensional mantle flow may play a significant role in melting processes along the ESR, especially if the spreading center is processing geochemically heterogeneous South Atlantic mantle.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Tong CH et al (2003) Influence of enhanced melt supply on upper crustal structure at a mid-ocean ridge discontinuity: a three-dimensional seismic tomography study of 9°N East Pacific Rise. J Geophys Res 108. doi:10.1029/2002JB002163

  2. Barker PF (2001) Scotia Sea regional tectonic evolution: implications for mantle flow and paleocirculation. Earth Sci Rev 55:1–39

    Article  Google Scholar 

  3. Barker PF, Lawver LA (1988) South American-Antarctic plate motion over the past 50 Ma and the evolution of the South American-Antarctic Ridge. Geophys J 94:377–386

    Article  Google Scholar 

  4. Bruguier NJ, Livermore RA (2001) Enhanced magma supply at the southern East Scotia Ridge: evidence for mantle flow around the subducting slab? Earth Planet Sci Lett 191:129–144

    Article  Google Scholar 

  5. Cannat M, Rommevaux-Jestin C, Sauter D, Deplus C, Mendel V (1999) Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). J Geophys Res 104:22825–22843

    Article  Google Scholar 

  6. Carbotte SM, Macdonald KC (1994) The axial topographic high at intermediate and fast spreading ridges. Earth Planet Sci Lett 128:85–97

    Article  Google Scholar 

  7. Cunningham WD, Dalziel IWD, Lee TY, Lawver LA (1995) Southernmost South America-Antarctic Peninsula relative plate motions since 84 Ma: implications for the tectonic evolution of the Scotia Arc region. J Geophys Res 100:8257–8266

    Article  Google Scholar 

  8. Dalziel IWD, Dott RH, Winn RD, Bruhn RL (1975) Tectonic relationships of South Georgia Island to the southernmost Andes. Geol Soc Am Bull 86:1034–1040

    Article  Google Scholar 

  9. Detrick RS, Sinton JM, Ito G, Canales JP, Behn M, Blacic T, Cushman B, Dixon JE, Graham D, Mahoney JJ (2002) Correlated geophysical, geochemical, and volcanological manifestations of plume-ridge interaction along the Galápagos Spreading Center. Geochem Geophys Geosyst. doi:10.1029/2002GC000350

    Google Scholar 

  10. Divins DL (2009) Total sediment thickness of the World’s Oceans & Marginal Seas. NOAA NGDC. http://www.ngdc.noaa.gov/mgg/sedthick/sedthick.html

  11. Dunn RA, Martinez F (2011) Contrasting crustal production and rapid mantle transitions beneath back-arc ridges. Nature. doi:10.1038/nature09690

    Google Scholar 

  12. Eagles G (2010) The age and origin of the central Scotia Sea. Geophys J Int 183:587–600

    Article  Google Scholar 

  13. Escrig S, Bezos A, Goldstein SL, Langmuir CH, Michael PJ (2009) Mantle source variations beneath the Eastern Lau Spreading Center and the nature of subduction components in the Lau Basin-Tonga arc system. Geochem Geophys Geosyst. doi:10.1029/2008GC002281

    Google Scholar 

  14. Ferrini VL, Tivey MK, Carbotte SM, Martinez F, Roman C (2008) Variable morphologic expression of volcanic, tectonic, and hydrothermal processes at six hydrothermal vent fields in the Lau back-arc basin. Geochem Geophys Geosyst. doi:10.1029/2008GC002047

    Google Scholar 

  15. Fretzdorff S, Livermore RA, Devey CW, Leat PT, Stoffers P (2002) Petrogenesis of the back-arc East Scotia Ridge, South Atlantic Ocean. J Petrol 43:1435–1467

    Article  Google Scholar 

  16. Georgen JE (2008) Mantle flow and melting beneath oceanic ridge–ridge–ridge triple junctions. Earth Planet Sci Lett 270:231–240

    Article  Google Scholar 

  17. Georgen JE, Lin J (2002) Three-dimensional passive flow and temperature beneath ocean ridge–ridge–ridge triple junctions. Earth Planet Sci Lett 204:115–132

    Article  Google Scholar 

  18. Georgen JE, Sankar RD (2010) Effects of ridge geometry on mantle dynamics in an oceanic triple junction region: implications for the Azores Plateau. Earth Planet Sci Lett 298:23–34

    Article  Google Scholar 

  19. Georgen JE, Lin J, Dick HJB (2001) Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets. Earth Planet Sci Lett 187:183–300

    Article  Google Scholar 

  20. Georgen JE, Kurz MD, Dick HJB, Lin J (2003) Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°–24°E). Earth Planet Sci Lett 206:509–528

    Article  Google Scholar 

  21. Govers R, Wortel MJR (2005) Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth Planet Sci Lett 236:505–523

    Article  Google Scholar 

  22. Harmon N, Blackman DK (2010) Effects of plate boundary geometry and kinematics on mantle melting beneath the back-arc spreading centers along the Lau Basin. Earth Planet Sci Lett 298:334–346

    Article  Google Scholar 

  23. Harrison D, Leat PT, Burnard PG, Turner G, Fretzdorff S, Millar IL (2003) Resolving mantle components in oceanic lavas from segment E2 of the East Scotia back-arc ridge, South Sandwich Islands. Geol Soc Lond Spec Publ 219:333–344

    Article  Google Scholar 

  24. Hochstaedter AG, Gill JB, Taylor B, Ishizuka O, Yuasa M, Morita S (2000) Across-arc geochemical trends in the Izu-Bonin arc: constraints on source composition and mantle melting. J Geophys Res 105:495–512

    Article  Google Scholar 

  25. Husson L (2006) Dynamic topography above retreating subduction zones. Geology 34:741–744

    Article  Google Scholar 

  26. Ito G, Lin J, Gable CW (1997) Interaction of mantle plumes and migrating mid-ocean ridges: implications for the Galapagos plume-ridge system. J Geophys Res 102:15403–15417

    Article  Google Scholar 

  27. Kato T, Beavan J, Matsushima T, Kotake Y, Camacho J, Nakao S (2003) Geodetic evidence of back arc spreading in the Marian Trough. Geophys Res Lett 30. doi:10.1029/2002GL016757

  28. Keller NS, Arculus RJ, Hermann J, Richards S (2008) Submarine back-arc lava with arc signature: Fonualei Spreading Center, northeast Lau Basin, Tonga. J Geophys Res. doi:10.1029/2007JB005451

    Google Scholar 

  29. Kelley KA, Plank T, Grove TL, Stolper EM, Newman S, Hauri S (2006) Mantle melting as a function of water content beneath back-arc basins. J Geophys Res. doi:10.1029/2005JB003732

    Google Scholar 

  30. Kitada K, Seama N, Yamazaki T, Nogi Y, Suyehiro K (2006) Distinct regional differences in crustal thickness along the axis of the Mariana Trough, inferred from gravity anomalies. Geochem Geophys Geosyst. doi:10.1029/2005GC001119

    Google Scholar 

  31. Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res 92:8089–8115

    Article  Google Scholar 

  32. Kuo BY, Forsyth DW (1988) Gravity anomalies of the ridge-transform system in the South Atlantic between 31° and 34.5°S: upwelling centers and variation in crustal thickness. Mar Geophys Res 10:205–232

    Article  Google Scholar 

  33. Kurz MD, Geist D (1999) Dynamics of the Galápagos hotspot from helium isotope geochemistry. Geochim Cosmochim Acta 63:4139–4156

    Article  Google Scholar 

  34. Kurz MD, le Roex AP, Dick HJB (1998) Isotope geochemistry of the oceanic mantle near the Bouvet Triple Junction. Geochim Cosmochim Acta 62:841–852

    Article  Google Scholar 

  35. Lagabrielle Y, Goddéris Y, Donnadieu Y, Malavieille J, Suarez M (2009) The tectonic history of Drake Passage and its possible impacts on global climate. Earth Planet Sci Lett 279:197–211

    Article  Google Scholar 

  36. Langmuir CH, Bezos A, Escrig S, Parman SW (2006) Chemical systematics and hydrous melting of the mantle in back-arc basins. From: Christie DM, Fisher CR, Lee S-M, Givens S 2003. Back-Arc spreading systems: geological, biological, chemical, and physical interactions. AGU Geophys Monogr Ser 166:87–146

  37. le Roex AP, Dick HJB, Reid AM, Erlank AJ (1982) Ferrobasalts from the Speiss Ridge segment of the Southwest Indian Ridge. Earth Planet Sci Lett 60:437–451

    Article  Google Scholar 

  38. le Roex AP, Dick HJB, Erlank AJ, Reid AM, Frey FA, Hart SR (1983) Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees east. J Petrol 24:267–318

    Article  Google Scholar 

  39. le Roex AP, Dick HJB, Reid AM, Frey FA, Erlank AJ, Hart SR (1985) Petrology and geochemistry of basalts from the American-Antarctic Ridge, Southern Ocean: implications for the westward influence of the Bouvet mantle plume. Contrib Mineral Petrol 90:367–380

    Article  Google Scholar 

  40. le Roex AP, Dick HJB, Watkins RT (1992) Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge: 11°53′E to 14°38′E. Contrib Mineral Petrol 110:253–268

    Article  Google Scholar 

  41. Leat PT, Livermore RA, Millar IL, Pearce JA (2000) Magma supply in back-arc spreading centre segment E2, East Scotia Ridge. J Petrol 41:845–866

    Article  Google Scholar 

  42. Leat PT, Pearce JA, Barker PF, Millar IL, Barry TL, Larter RD (2004) Magma genesis and mantle flow at a subducting slab edge: the South Sandwich back-arc system. Earth Planet Sci Lett 227:17–35

    Article  Google Scholar 

  43. Lin J, Purdy GM, Schouten H, Sempere JC, Zervas C (1990) Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge. Nature 344:627–632

    Article  Google Scholar 

  44. Livermore R (2003) Back-arc spreading and mantle flow in the East Scotia Sea. From: Larter, R.D., Leat, P.T., 2003. Intra-oceanic subduction systems: tectonic and magmatic processes. Geol Soc Lond Spec Publ 219:315–331

    Google Scholar 

  45. Livermore R, Cunningham A, Vanneste L, Larter R (1997) Subduction influence on magma supply at the East Scotia Ridge. Earth Planet Sci Lett 150:261–275

    Article  Google Scholar 

  46. Macdonald KC (1982) Mid-ocean ridges: fine scale tectonic, volcanic, and hydrothermal processes within the plate boundary zone. Ann Rev Earth Planet Sci 10:155–190

    Article  Google Scholar 

  47. Martinez F, Taylor B (2002) Mantle wedge control on back-arc crustal accretion. Nature 416:417–420

    Article  Google Scholar 

  48. Müller C, Bayer B, Eckstaller A, Miller H (2008) Mantle flow in the South Sandwich subduction environment from source-side shear wave splitting. Geophys Res Lett. doi:10.1029/2007GL032411

    Google Scholar 

  49. Neumann GA, Forsyth DW, Sandwell DT (1993) Comparison of marine gravity from shipboard and high-density satellite altimetry along the Mid-Atlantic Ridge, 30.5°–35.5°S. Geophys Res Lett 20:1639–1642

    Article  Google Scholar 

  50. Oakley AJ, Taylor B, Moore GF, Goodliffe A (2009) Sedimentary, volcanic, and tectonic processes of the central Mariana Arc: Mariana Trough back-arc formation and the West Marian Ridge. Geochem Geophys Geosyst 10. doi:10.1029/2008GC002312

  51. Parker RL (1973) The rapid calculation of potential anomalies. Geophys J R Astron Soc 31:447–455

    Article  Google Scholar 

  52. Pearce JA, Stern RJ (2006) Origin of back-arc basin magmas: trace element and isotope perspectives, in back-arc spreading systems: geological, biological, chemical, and physical interactions. AGU Geophys Monogr. 166:63–86. doi:10.1029/166GM06

    Article  Google Scholar 

  53. Pearce DW, Leat PT, Barker PF, Millar IL (2001) Geochemical tracing of Pacific-to-Atlantic upper mantle flow through the Drake Passage. Nature 410:457–461

    Article  Google Scholar 

  54. Peirce C, Turner IM, Sinha MC (2001) Crustal structure, accretionary processes and rift propagation: a gravity study of the intermediate-spreading Valu Fa Ridge, Lau Basin. Geophys J Int 146:53–73

    Article  Google Scholar 

  55. Plank T, Langmuir CH (1992) Effects of the melting regime on the composition of the oceanic crust. J Geophys Res 97:19749–19770

    Article  Google Scholar 

  56. Ribe NM (1996) The dynamics of plume-ridge interaction 2. Off-ridge plumes. J Geophys Res 101:16195–16204

    Article  Google Scholar 

  57. Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J Geophys Res 102:10039–10054

    Google Scholar 

  58. Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res. doi:10.1029/2008JB006008

    Google Scholar 

  59. Schreider AA, Kashintsev GL, Galindado-Zaldivar J, Maldonado A, Boiko AN, Evsenko EI (2011) Peculiarities of the East Scotia ridge’s geochronology. Mar Geol 5:1047–1060

    Google Scholar 

  60. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962

    Google Scholar 

  61. Smith GP, Wiens DA, Fischer KM, Dorman LM, Webb SC, Hildebrand JA (2001) A complex pattern of mantle flow in the Lau Backarc. Science 292:713–716

    Article  Google Scholar 

  62. Standish JJ, Dick HJB, Michael PJ, Melson WG, O’Hearn T (2008) MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9°–25°E): major element chemistry and the importance of process versus source. Geochem Geophys Geosyst. doi:10.1029/2008GC001959

    Google Scholar 

  63. Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst. doi:10.1029/2005GC001045

    Google Scholar 

  64. Taylor B, Martinez F (2003) Back-arc basin basalt systematics. Earth Planet Sci Lett 210:481–497

    Article  Google Scholar 

  65. Taylor B, Martinez F (2006) Opposing trends in crustal thickness and spreading rate along the back-arc Eastern Lau Spreading Center: implications for controls on ridge morphology, faulting, and hydrothermal activity. Earth Planet Sci Lett 245:655–672

    Article  Google Scholar 

  66. Thomas C, Livermore R, Pollitz F (2003) Motion of the Scotia Sea plates. Geophys J Int 155:789–804

    Article  Google Scholar 

  67. Todd E, Gill JB, Wysoczanski RJ, Hergt J, Wright IC, Leybourne MI, Mortimer N (2011) Hf isotopic evidence for small-scale heterogeneity in the mode of mantle wedge enrichment: Southern Harve Trough and South Fiji Basin back arcs. Geochem Geophys Geosyst 12. doi:10.1029/2011GC003683

  68. Woodhead J, Stern RJ, Pearce J, Hergt J, Vervoort J (2012) Hf–Nd isotope variation in Mariana Trough basalts: the importance of “ambient mantle” in the interpretation of subduction zone magmas. Geology 40:539–542

    Article  Google Scholar 

  69. Yamazaki T, Seama N, Okino K, Kitada K, Joshima H, Naka J (2003) Spreading process of the northern Marian Trough: Rifting-spreading transition at 22°N. Geochem Geophys Geosyst 3. doi:10.029/2002GC000492

Download references

Acknowledgments

NSF grant OCE-0936981 to Old Dominion University help to fund this research. The constructive and helpful reviews of the Editor, two anonymous referees, and Erin Todd significantly improved the manuscript and are appreciatively acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Georgen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nicholson, B., Georgen, J. Controls on crustal accretion along the back-arc East Scotia Ridge: constraints from bathymetry and gravity data. Mar Geophys Res 34, 45–58 (2013). https://doi.org/10.1007/s11001-013-9172-x

Download citation

Keywords

  • East Scotia Ridge
  • Back-arc spreading centers
  • Subduction
  • Marine gravity
  • Oceanic crustal accretion