Skip to main content
Log in

The northern boundary of the Jan Mayen microcontinent, North Atlantic determined from ocean bottom seismic, multichannel seismic, and gravity data

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

The Jan Mayen microcontinent was as a result of two major North Atlantic evolutionary cornerstones—the separation of Greenland from Norway (~54 Ma), accompanied by voluminous volcanic activity, and the jump of spreading from the Aegir to the Kolbeinsey ridge (~33 Ma), which resulted in the separation of the microcontinent itself from Eastern Greenland (~24 Ma). The resulting eastern and western sides of the Jan Mayen microcontinent are respectively volcanic and non-volcanic rifted margins. Until now the northern boundary of the microcontinent was not precisely known. In order to locate this boundary, two combined refraction and reflection seismic profiles were acquired in 2006: one trending S–N and consisting of two separate segments south and north of the island of Jan Mayen respectively, and the second one trending SW–NE east of the island. Crustal P-wave velocity models were derived and constrained using gravity data collected during the same expedition. North of the West Jan Mayen Fracture Zone (WJMFZ) the models show oceanic crust that thickens from west to east. This thickening is explained by an increase in volcanic activity expressed as a bathymetric high and most likely related to the proximity of the Mohn ridge. East of the island and south of the WJMFZ, oceanic Layers 2 and 3 have normal seismic velocities but above normal average crustal thickness (~11 km). The similarity of the crustal thickness and seismic velocities to those observed on the conjugate Møre margin confirm the volcanic origin of the eastern side of the microcontinent. Thick continental crust is observed in the southern parts of both profiles. The northern boundary of the microcontinent is a continuation of the northern lineament of the East Jan Mayen Fracture Zone. It is thus located farther north than previously assumed. The crust in the middle parts of both models, around Jan Mayen island, is more enigmatic as the data suggest two possible interpretations—Icelandic type of oceanic crust or thinned and heavily intruded continental crust. We prefer the first interpretation but the latter cannot be completely ruled out. We infer that the volcanism on Jan Mayen is related to the Icelandic plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Allen RM, Nolet G, Morgan WJ, Vogfjord K, Nettles M, Ekstrom G, Bergsson B, Erlendsson P, Foulger GR, Jakobsdottir S, Julian BR, Pritchard M, Ragnarsson S, Stefansson R (2002) Plume-driven plumbing and crustal formation of Iceland. J Geophys Res 107(B8):2163

    Article  Google Scholar 

  • Andersen OB, Knudsen P (1998) Global marine gravity field from the ERS-1 and geosat geodetic mission altimetry. J Geophys Res 103(C4):8129–8137

    Article  Google Scholar 

  • Behn MD, Boettcher MS, Hirth G (2007) Thermal structure of oceanic transform faults. Geology 35(4):307–310

    Article  Google Scholar 

  • Bjarnason I, Menke W, Flovenz O, Caress D (1993) Tomographic image of the Mid-Atlantic plate boundary is southwestern Iceland. J Geophys Res 98(B4):6607–6622

    Article  Google Scholar 

  • Breivik AJ, Verhoef J, Faleide JI (1999) Effect on thermal contrasts on gravity modeling at passive margins: results from the western Barents Sea. J Geophys Res 104(B7):15239–15311. doi:10.1029/1998JB900022

    Article  Google Scholar 

  • Breivik AJ, Mjelde R, Grogan P, Shimamura H, Murai Y, Nishimura Y, Kuwano A (2002) A possible Caledonite arm through the Barents Sea imaged by OBS data. Tectonophysics 355:67–97

    Article  Google Scholar 

  • Breivik A, Mjelde R, Grogan P, Shimamura H, Murai Y, Nishimura Y (2003) Crustal structure and transform margin development south of Svalbard based on ocean bottom seismometer data. Tectonophysics 369:37–70

    Article  Google Scholar 

  • Breivik AJ, Mjelde R, Grogan P, Shimamura H, Murai Y, Nishimura Y (2005) Caledonite development offshore-onshore Svalbard based on ocean bottom seismometer, conventional seismic, and potential field data. Tectonophysics 401:79–117

    Article  Google Scholar 

  • Breivik AJ, Mjelde R, Faleide JI, Murai Y (2006) rates of continental breakup magmatism and seafloor spreading in the Norway Basin-Iceland plume interaction. J Geophys Res 111(B07102). doi:10.1029/2005JB004004

  • Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J Geophys Res 100(B4):6093–6095

    Article  Google Scholar 

  • Eldholm O, Thiede J, Taylor E (1989) Evolution of the Vøring volcanic margin. In: Proceedings of the ocean drilling program, scientific results, vol 104. Ocean Drilling Program, College Station, TX, pp 1033–1065

  • Geli L, Renard V, Rommevaux C (1994) Ocean crust formation processes at very slow spreading centers: a model for the Mohns Ridge, near 72 N, based on magnetic, gravity, and seismic data. J Geophys Res 99:2995–3013

    Article  Google Scholar 

  • Gernigon L, Olesen O, Ebbing J, Wienecke S, Gaina C, Mogaard JO, Sand M, Myklebust R (2009) Geophysical insights and early spreading history in the vicinity of the Jan Mayen Fracture Zone, Norwegian-Greenland Sea. Tectonophysics 468:185–205

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG, Agterberg FP, Bleeker W, Cooper RA, Davydov V, Gibbard P, Hinnov LA, House MR, Lourens L, Luterbacher HP, McArthur J, Melchin MJ, Robb LJ, Shergold J, Villeneuve M, Wardlaw BR, Ali J, Brinkhuis H, Hilgen FJ, Hooker J, Howarth RJ, Knoll AH, Laskar J, Monechi S, Plumb KA, Powell J, Raffi I, Röhl U, Sadler P, Sanfilippo A, Schmitz B, Shackleton NJ, Shields GA, Strauss H, Van Dam J, van Kolfschoten T, Veizer J, Wilson D (2004) A geologic time scale 2004. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gudlaugsson ST, Gunnarsson M, Sand M, Skogseid J (1988) Tectonic and volcanic events at the Jan Mayen Ridge microcontinent. Geol Soc London Special Publ 39:85–93. doi:10.1144/GSL.SP.1988.039.01.09

    Article  Google Scholar 

  • Gudmundsson O (2003) The dense root of the Iceland crust. Earth Planet Sci Lett 206:427–440. doi:10.1016/S0012-821X(02)01110-X

    Article  Google Scholar 

  • Haase KM, Devey CW, Mertz DF, Stoffers P, Garbe-Schonberg CD (1996) Geochemistry of lavas from Mohns Ridge, Norwegian-Greenland Sea: implications for melting conditions and magma sources near Jan Mayen. Contrib Mineral Petrol 123:223–237

    Article  Google Scholar 

  • Haase KM, Devey DW, Wieneke M (2003) Magmatic processes and mantle heterogeneity beneath the slow-spreading northern Kolbeinsey Ridge segment, North Atlantic. Contrib Mineral Petrol 144:428–448

    Article  Google Scholar 

  • Havskov J, Atakan K (1991) Seismicity and volcanism of Jan Mayen Island. Terra Nova 3(5):517–526. doi:10.1111/j.1365-3121.1991.tb00187.x

    Google Scholar 

  • Huang J, Zhong S, van Hunen J (2003) Controls on sublithospheric small-scale convection. J Geophys Res 108(B8):2405. doi:10.1029/2003JB002456

    Article  Google Scholar 

  • Jakobsson M, Cherkis NZ, Woodward J, Macnab R, Coakley B (2000) New grid of Arctic bathymetry aids scientists and mapmakers. Eos Trans AGU 81(9):89. doi:10.1029/00EO00059

    Article  Google Scholar 

  • Johansen B, Eldholm O, Talwani M, Stoffa P, Buhl P (1988) Expanding spread profile at the northern Jan Mayen Ridge. Polar Res 6:95–104

    Article  Google Scholar 

  • Johnson GL, Campsie J (1976) Morphology and structure of the Western Jan Mayen Fracture Zone. Nor sk Polarinst Arbok 1974:69

    Google Scholar 

  • Jones SM, White N, Maclennan J (2002) V-shaped ridges around Iceland: implications for spatial and temporal patterns of mantle convection. Geochem Geophys Geosyst 3(10):1059. doi:10.1029/2002GC000361

    Article  Google Scholar 

  • Kandilarov A, Mjelde R, Okino K, Murai Y (2008) Crustal structure of the ultra-slow spreading Knipovich Ridge, North Atlantic, along a presumed amagmatic portion of oceanic crustal formation. Mar Geophys Res 29(2):109–134. doi:10.1007/s11001-008-9050-0

    Article  Google Scholar 

  • Kenyon S, Forsberg R, Coacley B (2008) New gravity field for the Arctic. EOS Trans AGU 89(32). doi:10.1029/2008EO320002

  • Kodaira S, Mjelde R, Gunnarsson K, Shiobara H, Shimamura H (1998) Structure of the Jan Mayen microcontinent and implications on its evolution. Geophys J Int 132:383–400

    Article  Google Scholar 

  • Kuvaas B, Kodaira S (1997) The formation of the Jan Mayen microcontinent: the missing piece in the continental puzzle between the Møre-Vøring basins and East Greenland. First Break 15:239–247

    Google Scholar 

  • Ljones F, Kuwano A, Mjelde R, Breivik A, Shimamura H, Murai Y, Nishimura Y (2004) Crustal transect from the North Atlantic Knipovich Ridge to the Svalbard Margin west of Hornsund. Tectonophysics 378:17–41

    Article  Google Scholar 

  • Ludwig WI, Nafe JE, Drake CL (1970) Seismic refraction. In: Maxwell AE (ed) The sea, vol 4. Wiley, New York, pp 53–84

    Google Scholar 

  • Lundin E, Doré AG (2002) Mid-Cenozoic post break-up deformation in the “passive” margins bordering the Norwegian-Greenland Sea. Mar Petroleum Geol 19:79–93

    Article  Google Scholar 

  • Mertz DF, Sharp WD, Haase KM (2004) Volcanism on the Eggvin Bank (Central Norwegian-Greenland Sea, latitude 71°N): age, source, and relationship to the Iceland and putative Jan Mayen plumes. J Geodyn 38:57–83

    Article  Google Scholar 

  • Mjelde R, Sellevoll MA (1996) S-wave structure of the Lofoten Margin, N Norway, from wide-angle seismic data: a review. Norsk Geologisk Tidsskrift 76:231–244

    Google Scholar 

  • Mjelde R, Fjellanger JP, Digranes P, Kodaira S, Shimamura H, Shiobara H (1997) Application of the single-bubble airgun technique for OBS-data acquisition across the Jan Mayen Ridge, North Atlantic. Mar Geophys Res 19(81):96

    Google Scholar 

  • Mjelde R, Digranes P, Van Schaack M, Shimamura H, Shiobara H, Kodaira S, Næss O, Sørens N, Vågnes E (2001) Crustal structure of the outer Vøring Plateau, offshore Norway, from ocean bottom seismic and gravity data. J Geophys Res 106(B4):6769–6791

    Article  Google Scholar 

  • Mjelde R, Raum T, Digranes P, Shimamura H, Shiobara H, Kodaira S (2003a) Vp/Vs ratio along the Vøring Margin, NE Atlantic, derived from OBS data: implications on lithology and stress field. Tectonophysics 369:175–197

    Article  Google Scholar 

  • Mjelde R, Shimamura H, Kanazawa T, Kodaira S, Raum T, Shiobara H (2003b) Crustal lineaments, distribution of lower crustal intrusives and structural evolution of the Vøring Margin, NE Atlantic; new insight from wide angle seismic models. Tectonophysics 369:199–218

    Article  Google Scholar 

  • Mjelde R, Raum T, Myhren B, Shimamura H, Murai Y, Takanami T, Karpuz R, Næss U (2005) Continent-ocean transition on the Vøring Plateau, NE Atlantic, derived from densely sampled ocean bottom seismometer data. J Geophys Res 110:B05101. doi:10.1029/2004JB003026

    Article  Google Scholar 

  • Mjelde R, Eckhoff I, Solbakken S, Kodaira S, Shimamura H, Gunnarsson K, Nakanishi A, Shiobara H (2007) Gravity and S-wave modeling across the Jan Mayen Ridge, North Atlantic; implications for crustal lithology. Mar Geophys Res 28:27–41

    Article  Google Scholar 

  • Mjelde R, Raum T, Breivik AJ, Faleide JI (2008a) Crustal transect along the North Atlantic. Mar Geophys Res 29:73–87. doi:10.1007/s11001-008-9046-9

    Article  Google Scholar 

  • Mjelde R, Breivik AJ, Raum T, Mittelstaedt E, Ito G, Faleide JI (2008b) Magmatic and tectonic evolution of the North Atlantic. J Geol Soc London 165:31–42

    Article  Google Scholar 

  • Mjelde R, Raum T, Kandilarov A, Murai Y, Takanami T (2009) Crustal structure and evolution of the outer Møre Margin, NE Atlantic. Tectonophysics 468:224–243. doi:10.1016/j.tecto.2008.06.003

    Article  Google Scholar 

  • Morgan WJ (1981) Hotspot tracks and the opening of the Atlantic and Pacific Oceans. In: Emiliane C (ed) The sea, vol 7, pp 443–487

  • Morgan WJ (1983) Hotspot tracks and the early rifting of the Atlantic. Tectonophysics 94:123–139

    Article  Google Scholar 

  • Mosar J, Torsvik TH, the BAT team (2002b) Opening of the Norwegian and Greenland Seas: plate tectonics in Mid Norway since the Late Permian. In: Eide EA (coord) BATLAS—mid Norway plate reconstructions atlas with global and Atlantic perspective. Geological Survey of Norway, pp 48–59

  • Mosar J, Eide EA, Osmundsen PT, Sommaruga A, Torsvik TH (2002) Greenland-Norway separation: a geodynamic model for the North Atlantic. Nor JGeol 82:281–298

    Google Scholar 

  • Myhre A, Eldholm O, Sundvor E (1984) The Jan Mayen ridge: present status. Polar Res 2(1):47–59

    Article  Google Scholar 

  • Neumann ER, Schilling J-G (1984) Petrology of basalts from the Mohns-Knipovich ridge; the Norwegian-Greenland Sea. Contrib Mineral Petrol 85:209–223

    Article  Google Scholar 

  • Pedersen RB, Thorseth IH, Nygaard T-E, Lilley M, Kelley D (2010) Hydrothermal activity along the Arctic Mid-Ocean Ridge. In: Rona P et al. (eds) Diversity of hydrothermal, systems on slow-spreading ocean ridges, vol 188. AGU Geophysical Monograph series, pp 67–98

  • Pedley RC (1993) GRAVMAG—user manual. Interactive 25D gravity and magnetic modeling program. British Geological Survey, Keyworth, Nottingham

    Google Scholar 

  • Ritzmann O, Jokat W, Mjelde R, Shimamura H (2002) Crustal structure between the Knipovich Ridge and the Van Mijenfjorden (Svalbard). Mar Geophys Res 23:379–401

    Article  Google Scholar 

  • Schilling J-G, Zajac M, Evans R, Johnston T, White W, Devine JD, Kingsley R (1983) Petrologic and geochemical variations along the mid-Atlantic ridge from 29°N to 73°N. Am J Sci 283:510–586

    Article  Google Scholar 

  • Schilling J-G, Kingsley R, Fontignie D, Poreda R, Xue S (1999) Dispersion of the Jan Mayen and Iceland mantle plumes in the Arctic: a He-Pb-Nd-Sr isotope tracer study of basalts from the Kolbeinsey, Mohns and Knipovich Ridges. J Geophys Res 104(B5):10543–10569

    Article  Google Scholar 

  • Sigmundsson F (2006) Iceland geodynamics: crustal deformation and divergent plate tectonics. Springer, Berlin ISBN 10: 3-540-24165-5

    Google Scholar 

  • Talwani M, Eldholm O (1977) Evolution of the Norwegian-Greenland Sea. Geol Soc Am Bull 88:969–999

    Article  Google Scholar 

  • Tessensohn F, Piepjohn K (2000) Eocene compressive deformation in arctic Canada, north Greenland and Svalbard and it plate tectonic causes. Polarforschung 68:121–124

    Google Scholar 

  • Torsvik TH, Van der Voo R, Meert J, Mosar J, Walderhaug HJ (2001) Reconstructions of the continents around the North Atlantic at about the 60th parallel. Earth Planet Sci Lett 187(55):69

    Google Scholar 

  • Vink GE (1984) A hotspot model for Iceland and the Vøring plateau. J Geophys Res 89:9949–9959

    Article  Google Scholar 

  • Vogt PR (1971) Asthenosphere motion recorded by the ocean floor south of Iceland. Earth Planet Sci Lett 13:153–160

    Article  Google Scholar 

  • Vogt PR (1986) Geophysical and geochemical signatures and plate tectonics. In: Hurdle BG (ed) The nordic seas. Springer, Berlin, pp 413–663

    Google Scholar 

  • Weigel W, Fluh ER, Miller H (1995) Investigations of the East Greenland continental margin between 708 and 728 N by deep seismic sounding and gravity studies. Mar Geophys Res 17:167–199

    Article  Google Scholar 

  • White R, McKenzie D (1989) Magmatism at rift zones: the generation of volcaic continental margins and flood basalts. J Geophys Res 94(b&):7685–7729

    Article  Google Scholar 

  • White RS, McKenzie D, O’Nions K (1992) Oceanic crustal thickness from seismic measurements and rare elements inversions. J Geophys Res 97(B13):19683–19715

    Article  Google Scholar 

  • Zelt CA (1999) Modelling strategies and model assessment for wide angle seismic traveltime data. Geophys J Int 139:183–204

    Article  Google Scholar 

  • Zelt CA, Ellis RM (1988) Practical and efficient ray tracing in two-dimensional media for rapid traveltime and amplitude forward modelling. Can J Explor Geophys 24:16–31

    Google Scholar 

  • Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Int 108:16–34

    Article  Google Scholar 

  • Zelt CA, Sain K, Naumenko JV, Sawyer DS (2003) Assessment of crustal velocity models using seismic refraction and reflection tomography. Geophys J Int 153:609–626

    Article  Google Scholar 

  • Zhang Y-S, Tanimoto T (1993) High-resolution global upper mantle structure and plate tectonics. J Geophys Res 98(B6):9793–9823. doi:10.1029/93JB00148

    Google Scholar 

Download references

Acknowledgments

We would like to thank to the crew of RV G. O. Sars and the engineers from the University of Bergen for their help during the survey. The authors also want to thank Thomas Raum for guidance during the OBS modeling, to Arne Gidskehaug for help in preparing the gravity data and to Professor Brian Robins for correcting the manuscript. We finally thank the Norwegian Petroleum Directorate, University of Bergen and the European Union through the Transitional Access program (grant RITA-CT-2004-505322 to IFM-GEOMAR) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandre Kandilarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandilarov, A., Mjelde, R., Pedersen, RB. et al. The northern boundary of the Jan Mayen microcontinent, North Atlantic determined from ocean bottom seismic, multichannel seismic, and gravity data. Mar Geophys Res 33, 55–76 (2012). https://doi.org/10.1007/s11001-012-9146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-012-9146-4

Keywords

Navigation