Skip to main content
Log in

Wave height characteristics in the Mediterranean Sea by means of numerical modeling, satellite data, statistical and geometrical techniques

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

In this paper the main wave height characteristics in the Mediterranean Sea are studied from both observational and numerical perspectives. The numerical wave model WAM is employed on a high spatial resolution mode and in two different versions, one of which incorporates information for sea surface currents. Altimeter data obtained from all available satellite missions over the area are also utilized. The data sets are analyzed both by conventional statistical measures as well as by advanced techniques provided by a relatively new branch of mathematics, information geometry, in the framework of which the data under study and the distributions that they form are treated as elements of non Euclidean spaces. In this framework, novel ideas for the estimation of the deviations between the observed and modeled values are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. http://www.mg.uoa.gr/

References

  • Abdalla S, Bidlot J, Janssen P (2005a) Assimilation of ERS and ENVISAT wave data at ECMWF. ENVISAT & ERS symposium, Salzburg, 6–10 September 2004 (ESA SP-572, April 2005)

  • Abdalla S, Bidlot J, Janssen P (2005b) Jason altimeter wave height verification and assimilation. In: Proceedings of the seventh international conference on the Mediterranean coastal environment (MEDCOAST 05), Kusadasi, 25–29 October 2005, pp 1179–1185

  • Abdalla S, Janssen P, Bidlot J (2010) Jason-2 OGDR wind and wave products: monitoring, validation and assimilation. Mar Geodesy 33(1):239–255. doi:10.1080/01490419.2010.48779

    Article  Google Scholar 

  • Amari SI (1985) Differential geometrical methods in statistics. Springer lecture notes in statistics 28. Springer, Berlin

    Book  Google Scholar 

  • Amari SI, Nagaoka H (2000) Methods of information geometry. Oxford University Press, Oxford

    Google Scholar 

  • Arwini K, Dodson CTJ (2007) Alpha-geometry of the weibull manifold. Second basic science conference, Tripoli

  • Arwini K, Dodson CTJ (2008) Information geometry: near randomness and near independence. Lecture notes in mathematics 1953. Springer, Berlin

    Google Scholar 

  • Bertotti L, Bidlot J, Bunney C, Cavaleri L, Delli Passeri L, Gomez M, Lefevre JM, Paccagnella T, Torrisi L, Valentini A, Vocino A (2011) Performance of different forecast systems in an exceptional storm in the western Mediterranean Sea. Q J R Meteorol Soc. doi:10.1002/qj.892

  • Bidlot J, Janssen P, Abdalla S, Hersbach H (2007) A revised formulation of ocean wave dissipation and its model impact. ECMWF tech. memo. 509. ECMWF, Reading, p 27, available online at: http://www.ecmwf.int/publications/

  • Breivik LA, Reistad M (1994) Assimilation of ERS-1 altimeter wave heights in an operational numerical wave model. Weather Forecast 9:440–451

    Article  Google Scholar 

  • Chu PC, Cheng KF (2007) Effect of wave boundary layer on the sea-to-air dimethylsulfide transfer velocity during typhoon passage. J Marine Syst 66:122–129

    Article  Google Scholar 

  • Chu PC, Cheng KF (2008) South China Sea wave characteristics during Typhoon Muifa passage in winter 2004. J Oceanogr 64:1–21

    Article  Google Scholar 

  • Chu PC, Qi Y, Chen YC, Shi P, Mao QW (2004) South China Sea wave characteristics. Part-1: validation of wavewatch-III using TOPEX/poseidon data. J Atmos Ocean Technol 21(11):1718–1733

    Article  Google Scholar 

  • D’Agostino RB, Stephens MA (1986) Goodness-of-fit techniques. Marcel Dekker, New York

    Google Scholar 

  • Dobricic S, Pinardi N (2008) An oceanographic three-dimensional variational data assimilation scheme. Ocean Model 22:89–105

    Article  Google Scholar 

  • Durrant TH, Greenslade D, Simmonds I (2009) Validation of Jason-1 and Envisat remotely sensed wave heights. J Atmos Ocean Sci 26:123–124

    Google Scholar 

  • Emmanouil G, Galanis G, Kallos G, Breivik LA, Heilberg H, Reistad M (2007) Assimilation of radar altimeter data in numerical wave models: an impact study in two different wave climate regions. Ann Geophys 25(3):581–595

    Article  Google Scholar 

  • Enjolras V, Vincent P, Souyris JC, Rodriguez E, Phalippou L, Cazenave A (2006) Performances study of interferometric radar altimeters: from the instrument to the global mission definition. Sensors 6:164–192

    Article  Google Scholar 

  • Galanis G, Anadranistakis M (2002) A one dimensional Kalman filter for the correction of near surface temperature forecasts. Meteorol Appl 9:437–441

    Article  Google Scholar 

  • Galanis G, Louka P, Katsafados P, Kallos G, Pytharoulis I (2006) Applications of Kalman filters based on non-linear functions to numerical weather predictions. Ann Geophys 24:2451–2460

    Article  Google Scholar 

  • Galanis G, Emmanouil G, Kallos G, Chu PC (2009) A new methodology for the extension of the impact in sea wave assimilation systems. Ocean Dyn 59(3):523–535

    Article  Google Scholar 

  • Greenslade D, Young I (2005) The impact of inhomogenous background errors on a global wave data assimilation system. J Atmos Ocean Sci 10(2):61–93

    Article  Google Scholar 

  • Hasselmann K (1974) On the characterization of ocean waves due to white capping. Boundary-Layer Meteorol 6:107–127

    Article  Google Scholar 

  • Hasselmann S, Hasselmann K, Allender JH, Barnett TP (1985) Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum. Part II: parameterizations of the nonlinear energy transfer for application in wave models. J Phys Oceanogr 15(11):1378–1391

    Article  Google Scholar 

  • Holthuijsen LH (2007) Waves in oceanic and coastal waters. Cambridge Univesity Press, Cambridge

    Book  Google Scholar 

  • Janssen P (2000) ECMWF wave modeling and satellite altimeter wave data. In: Halpern D (ed) Satellites, oceanography and society. Elsevier, NY, pp 35–36

    Chapter  Google Scholar 

  • Janssen P (2004) The interaction of ocean waves and wind. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Janssen P, Onorato M (2007) The intermediate water depth limit of the Zakharov equation and consequences for wave prediction. J Phys Oceanogr 37:2389–2400

    Article  Google Scholar 

  • Janssen P, Lionello P, Reistad M, Hollingsworth A (1987) A study of the feasibility of using sea and wind information from the ERS-1 satellite, part 2: use of scatterometer and altimeter data in wave modelling and assimilation. ECMWF report to ESA, Reading

  • Janssen P, Abdalla S, Hersbach H, Bidlot J (2007) Error estimation of buoy, satellite and model wave height data. J Atmos Ocean Technol 24:1665–1677

    Article  Google Scholar 

  • Kallos G (1997) The regional weather forecasting system SKIRON. In: Proceedings, symposium on regional weather prediction on parallel computer environments, 15–17 October 1997, Athens, p 9

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME Ser D 82:35–45

    Google Scholar 

  • Kalman RE, Bucy RS (1961) New results in linear filtering and prediction problems. Trans ASME Ser D 83:95–108

    Google Scholar 

  • Kalnay E (2002) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, New York

    Google Scholar 

  • Komen G, Hasselmann S, Hasselmann K (1984) On the existence of a fully developed windsea spectrum. J Phys Oceanogr 14:1271–1285

    Article  Google Scholar 

  • Komen G, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen P (1994) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lionello P, Günther H, Janssen P (1992) Assimilation of altimeter data in a global third generation wave model. J Geophys Res 97(C9):14453–14474

    Article  Google Scholar 

  • Lionello P, Günther H, Hansen B (1995) A sequential assimilation scheme applied to global wave analysis and prediction. J Marine Syst 6:87–107

    Article  Google Scholar 

  • Makarynskyy O (2004) Improving wave predictions with artificial neural networks. Ocean Eng 31(5–6):709–724

    Article  Google Scholar 

  • Makarynskyy O (2005) Neural pattern recognition and prediction for wind wave data assimilation. Pac Oceanogr 3(2):76–85

    Google Scholar 

  • Muraleedharan G, Rao AD, Kurup PG, Unnikrishnan N, Mourani S (2007) Modified Weibull distribution for maximum and significant wave height simulation and prediction. Coast Eng 54:630–638

    Article  Google Scholar 

  • Papadopoulos A, Katsafados P, Kallos G (2001) Regional weather forecasting for marine application. Global Atmos Ocean Syst 8(2–3):219–237

    Google Scholar 

  • Pinardi N, Allen I, De Mey P, Korres G, Lascaratos A, Le Traon PY, Maillard C, Manzella G, Tziavos C (2003) The Mediterranean ocean forecasting system: first phase of implementation (1998–2001). Ann Geophys 21(1):3–20

    Article  Google Scholar 

  • Rao ST, Zurbenko IG, Neagu R, Porter PS, Ku JY, Henry RF (1997) Space and time scales in ambient ozone data. Bull Am Meteor Soc 78(10):2153–2166

    Article  Google Scholar 

  • Rosmorduc V, Benveniste J, Lauret O, Maheu C, Milagro M, Picot N (2009) Radar altimetry tutorial. In: Benveniste J, Picot N (ed). http://www.altimetry.info

  • Spivak M (1965) Calculus on manifolds. W. A. Benjamin, New York

    Google Scholar 

  • Spivak M (1979) A comprehensive introduction to differential geometry, vol 1–5, 2nd edn. Publish or Perish, Wilmington

    Google Scholar 

  • Tonani M, Pinardi N, Adani N, Bonazzi A, Coppini G, De Dominicis M, Dobricic S, Drudi M, Fabbroni N, Fratianni C, Grandi A, Lyubartsev S, Oddo P, Pettenuzzo D, Pistoia J, Pujol I (2008) The Mediterranean ocean forecasting system, coastal to global operational oceanography: achievements and challenges. In: Proceedings of the fifth international conference on EuroGOOS 20–22 May 2008, Exeter

  • WAMDIG (The WAM-Development and Implementation Group), Hasselmann S, Hasselmann K, Bauer E, Bertotti L, Cardone CV, Ewing JA, Greenwood JA, Guillaume A, Janssen P, Komen G, Lionello P, Reistad M, Zambresky L (1988) The WAM model: a third generation ocean wave prediction model. J Phys Oceanogr 18(12):1775–1810

    Article  Google Scholar 

  • Yaplee BS et al (1971) Nanoseconds radar observations of the ocean surface from a stable platform. IEEE Trans Geosci Electron GE-9:171–174

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by the MARINA project (7th Framework Programme, Grant agreement number: 241402, http://www.marina-platform.info/), the E-wave project (funded by the Research Promotion Foundation of Cyprus, http://www.oceanography.ucy.ac.cy/ewave/) and the MyOcean project (European Marine Core Service, EU FP7, http://www.myocean.eu.org/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Galanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galanis, G., Hayes, D., Zodiatis, G. et al. Wave height characteristics in the Mediterranean Sea by means of numerical modeling, satellite data, statistical and geometrical techniques. Mar Geophys Res 33, 1–15 (2012). https://doi.org/10.1007/s11001-011-9142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-011-9142-0

Keywords

Navigation