Marine Geophysical Research

, Volume 32, Issue 1–2, pp 225–243 | Cite as

Morphology, distribution and origin of recent submarine landslides of the Ligurian Margin (North-western Mediterranean): some insights into geohazard assessment

  • Sébastien MigeonEmail author
  • Antonio Cattaneo
  • Virginie Hassoun
  • Christophe Larroque
  • Nicola Corradi
  • Francesco Fanucci
  • Alexandre Dano
  • Bernard Mercier de Lepinay
  • Françoise Sage
  • Christian Gorini
Original Research Paper


Based on new multibeam bathymetric data, seismic-reflection profiles and side-scan sonar images, a great number of submarine failures of various types and sizes was identified along the northern margin of the Ligurian Basin and characterized with 3 distinct end-members concerning their location on the margin, sedimentary processes and possible triggering mechanisms. They include superficial landslides mainly located in the vicinity of the main mountain-supplied rivers and on the inner walls of canyons (typically smaller that 108 m3 in volume: Type 1), deep scars 100–500 m high along the base of the continental slope (Type 2), and large-scale scars and Mass Transport Deposits (MTDs) affecting the upper part of the slope (Type 3 failures). The MTDs are located in different environmental contexts of the margin, including the deep Var Sedimentary Ridge (VSR) and the upper part of the continental slope in the Gulf of Genova (Finale Slide and Portofino Slide), with volumes of missing sediment reaching up to 1.5 × 109 m3. High sedimentation rates related to hyperpycnal flows, faults and earthquake activity, together with sea-level fluctuations are the main factors invoked to explain the distribution and sizes of these different failure types.


Ligurian Sea Submarine landslides Seafloor morphology Seismic-reflection profiles Side-scan sonar 



The authors would like to thank the captains and crew of the RV Le Suroît (Ifremer-Genavir) and the RV Téthys II (INSU-CNRS). This work was funded by the French research programs “GDR Marges”, “Reliefs de la Terre” and “Action Marges”. The final version of the manuscript benefited from constructive suggestions and comments by Sam Johnson and an anonymous reviewer.


  1. Bakun WH, Scotti O (2006) Regional intensity attenuation models for France and the estimation of magnitude and location of historical earthquakes. Geophys J Int 164:596–610CrossRefGoogle Scholar
  2. Baztan J, Berné S, Olivet J-L, Rabineau M, Aslanian D, Gaudin M, Réhault J-P, Canals M (2005) Axial incision: the key to understand submarine canyon evolution (in the western Gulf of Lion). Marine Petroleum Geol 22:805–826CrossRefGoogle Scholar
  3. Bertoni C, Cartwright JA (2006) Controls on the basinwide architecture of late Miocene (Messinian) evaporites on the Levant margin (Eastern Mediterranean). Sed Geol 188(189):93–114CrossRefGoogle Scholar
  4. Béthoux N, Fréchet J, Guyoton F, Thouvenot F, Cattaneo M, Eva E, Feignier B, Nicolas M, Granet M (1992) A closing Ligurian Sea? Pure Appl Geophys 139(2):179–194CrossRefGoogle Scholar
  5. Béthoux N, Tric E, Chery J, Beslier M-O (2008) Why is the Ligurian basin (Mediterranean sea) seismogenic? Thermomechanical modeling of a reactivated passive margin. Tectonics 27:TC5011. doi: 10.1029/2007TC002232 CrossRefGoogle Scholar
  6. Bigot-Cormier F, Sage F, Sosson M, Déverchère J, Ferrandini M, Guennoc P, Popoff M, Stéphan J-F (2004) Déformations pliocènes de la marge nord-Ligure (France): les conséquences d’un chevauchement crustal sud-alpin. Bulletin de la Société Géologique de France 175(2):197–211CrossRefGoogle Scholar
  7. Canals M et al (2004) Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Mar Geol 213:9–72CrossRefGoogle Scholar
  8. Cattaneo A et al (2010) Submarine landslides along the Algerian margin: a review of their occurence and potential link with tectonic structures. In: Mosher DC et al (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research, Springer, 28, 541–552Google Scholar
  9. Chaumillon E, Deverchère J, Réhault J-P, Gueguen E (1994) Réactivation tectonique et flexure de la marge continentale Ligure (Méditerranée Occidentale). Comptes Rendus de l’Académie des Sciences Paris 319:675–682Google Scholar
  10. Cochonat P, Dodd L, Bourillet J-F, Savoye B (1993) Geotechnical characteristics and instability of submarine slope sediments, the Nice slope (N-W Mediterranean Sea). Mar Georesour Geotechnol 11:131–151CrossRefGoogle Scholar
  11. Collot J-Y, Lewis K, Lamarche G, Lallemand S (2001) The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zeland: result of oblique seamount subduction. J Geophys Res 106(B9):19271–19297CrossRefGoogle Scholar
  12. Corradi N, Cuppari A, Fanucci F, Morelli D (2001) Gravitative instability of sedimentary masses on the Ligurian Sea margins. GeoActa 1:37–44Google Scholar
  13. Courboulex F, Deschamps A, Cattaneo M, Costi F, Déverchère J, Virieux J, Augliera P, Lanza V, Spallarossa D (1998) Source study and tectonic implications of the 1995 Ventimiglia (border of Italy and France) earthquake (M = 4.7). Tectonophysics 290:245–257CrossRefGoogle Scholar
  14. Dan G, Sultan N, Savoye B (2007) The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling. Mar Geol 245:40–64CrossRefGoogle Scholar
  15. Eva E, Solarino S, Spallarossa D (2001) Seismicity and crustal structure beneath the western Ligurian Sea derived from local earthquake tomography. Tectonophysics 339:495–510CrossRefGoogle Scholar
  16. Ferrari G (1991) The 1887 Ligurian earthquake: a detailed study from contemporary scientific observations. Tectonophysics 193:131–139CrossRefGoogle Scholar
  17. Fine IV, Rabinovitch AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215:45–57CrossRefGoogle Scholar
  18. Fryer GJ, Watts P, Pratson LF (2004) Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc. Mar Geol 203:201–218CrossRefGoogle Scholar
  19. Garziglia S, Migeon S, Ducassou E, Loncke L, Mascle J (2008) Mass-transport deposits on the Rosetta province (NW Nile Dea-sea turbidite system, Egyptian margin): characteristics, distribution, and potential causal processes. Mar Geol 250:180–198CrossRefGoogle Scholar
  20. Gennesseaux M, Mauffret A, Pautot G (1980) Les glissements sous-marins de la pente continentale niçoise et la rupture de câbles en mer Ligure (Méditerranée occidentale). Comptes Rendus de l’Académie des Sciences Paris 290:959–962Google Scholar
  21. Goldfinger C, Kulm LD, McNeill LC, Watts P (2000) Super-scale failure of the southern Oregon Cascadia Margin. Pure Appl Geophys 157:1189–1226CrossRefGoogle Scholar
  22. Haflidason H, Sejrup HP, Nygard A, Mienert J, Bryn P, Lien R, Forsberg CF, Berg K, Masson DG (2004) The Storegga slide: architecture, geometry and slide development. Mar Geol 213:201–234CrossRefGoogle Scholar
  23. Hassoun V, Migeon S, Cattaneo A, Larroque C, Mercier de Lepinay B (2009) Imbricated scars on the Ligurian continental slope: evidence for multiple failure events in the 1887 eathquake epicentral area. International conference on seafloor mapping for geohazard assessment, 11–13 May 2009, Ischia (Italy). Rendiconti online della Società Geologica Italiana, 7, 113–117Google Scholar
  24. Hsu KJ, Cita MB, Ryan WBF (1973) The origin of the Mediterranean evaporites. In: Initial Reports DSDP. US Govt. Printing Office, Washington D.C., pp 1203–1231Google Scholar
  25. Huhnerbach V, Masson DG (2004) Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Mar Geol 213:343–362CrossRefGoogle Scholar
  26. Imbo Y, De Batist M, Canals M, Prieto MJ, Baraza J (2003) The Gebra slide: a submarine slide on the trinity Peninsula Margin. Antarctica. Mar Geol 193:235–252CrossRefGoogle Scholar
  27. Ioualalen M, Migeon S, Sardou O (2010) Landslide tsunami vulnerability in the Ligurian Sea: case study of the October 16th 1979 Nice airport submarine landslide and of identified geological mass failures. Geophys J Int 181(2):724–740Google Scholar
  28. Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19(6):1095–1106CrossRefGoogle Scholar
  29. Klaucke I, Cochonat P (1999) Analysis of past seafloor failures on the continental slope off Nice (SE France). Geo-Mar Lett 19:245–253CrossRefGoogle Scholar
  30. Klaucke I, Savoye B, Cochonat P (2000) Patterns and processes of sediment dispersal on the continental slope off Nice, SE France. Mar Geol 162:405–422CrossRefGoogle Scholar
  31. Kvalstad, T. J. (2007) What is the current “best practice” in offshore geohazard investigations? A state-of-the-art review. Offshore technology conference, 30 April–3 May 2007, Houston, TX, USA. OTC 18545, 14 ppGoogle Scholar
  32. Laberg JS, Vorren TO, Dowdeswell JA, Kenyon NH, Taylor J (2000) The Andøya slide and the Andøya Canyon, north- eastern Norwegian–Greenland Sea. Mar Geol 162:259–275CrossRefGoogle Scholar
  33. Lamarche G, Joanne C, Collot J-Y (2008) Successive, large mass-transport deposits in the south Kermadec fore-arc basin, New Zealand: The Matakaoa submarine instability complex. Geochem Geophys Geosyst 9(4):1–30CrossRefGoogle Scholar
  34. Lambeck K, Purcell A (2005) Sea-level change in the mediterranean Sea since the LGM: model predictions for tectonically stable areas. Quat Sci Rev 24:1969–1988CrossRefGoogle Scholar
  35. Larroque C, Mercier de Lepinay B, Migeon S (this issue) Morphotectonic and faults-earthquakes relationship along the northern Ligurian margin (Western Mediterranean) based on high-resolution multibeam bathymetry and multichannel seismic reflection. Marine Geophys ResGoogle Scholar
  36. Larroque C, Béthoux N, Calais C, Courboulex F, Deschamps A, Déverchère J, Stéphan J-F, Ritz J-F, Gilli E (2001) Active and recent deformation at the Southern Alps-Ligurian basin junction. Netherland Journal of GeoSciences 80:255–272Google Scholar
  37. Larroque C, Delouis B, Godel B, Nocquet J-M (2009) Active deformation at the southwestern Alps—Ligurian basin junction (France–Italy boundary): evidence for recent change from compression to extension in the Argentera massif. Tectonophysics 467:1–4CrossRefGoogle Scholar
  38. Lastras G, Canals M, Urgeles R, De Batist M, Calafat AM, Casamor JL (2004) Characterisation of the recent BIG’95 debris flow deposit on the Ebro margin, Western Mediterranean Sea, after a variety of seismic reflection data. Mar Geol 213:235–255CrossRefGoogle Scholar
  39. Lofi J, Gorini C, Berne S, Clauzon G, dos Reis AT, Ryan WBF, Steckler MS (2005) Erosional processes and paleo-environmental changes in the western Gulf of Lions (SW France) during the Messinian Salinity Crisis. Mar Geol 217:1–30CrossRefGoogle Scholar
  40. Lòpez-Venegas AM, Ten Brink US, Geist EL (2008) Submarine landslide as the source for the October 11, 1918 Mona Passage tsunami: observations and modeling. Mar Geol 254:35–46CrossRefGoogle Scholar
  41. Mascle J, Sardou O, Loncke L, Migeon S, Caméra L, Gaullier V (2006) Morphostructure of the Egyptian continental margin: insights from swath bathymetry surveys. Mar Geophys Res 27:49–59CrossRefGoogle Scholar
  42. Maslin M, Owen M, Day S, Long D (2004) Linking continental-slope failures and climate change: testing the clathrate gun hypothesis. Geology 32:53–56CrossRefGoogle Scholar
  43. Maslin M, Vilela C, Mikkelsen N, Grootes P (2005) Causes of catastrophic sediment failures of the Amazon Fan. Quat Sci Rev 24:2180–2193CrossRefGoogle Scholar
  44. McAdoo BG, Watts P (2004) Tsunami hazard from submarine landslides on the Oregon continental slope. Mar Geol 203:235–245CrossRefGoogle Scholar
  45. McAdoo BG, Pratson LF, Orange DL (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136CrossRefGoogle Scholar
  46. Migeon S, Savoye B, Zanella E, Mulder T, Faugères J-C, Weber O (2001) Detailed seismic-reflection and sedimentary study of turbidite sediment waves on the Var Sedimentary Ridge (SE France): significance for sediment transport and deposition and for the mechanisms of sediment-wave construction. Marine Petroleum Geol 18:179–208CrossRefGoogle Scholar
  47. Migeon S, Mulder T, Savoye B, Sage F (2006) The Var turbidite system (Ligurian Sea, northwestern Mediterranean)-morphology, sediment supply, construction of turbidite levee and sediment waves: implication for hydrocarbon reservoirs. Geo Mar Lett 26:361–371CrossRefGoogle Scholar
  48. Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian Ridge. J Geophys Res 94(B12):17,465–417,484Google Scholar
  49. Mulder T, Savoye B, Syvitski JPM, Parize O (1996) Des courants de turbidité hyperpycnaux dans la tête du canyon du Var? Données hydrologiques et observations de terrain. Oceanol Acta 20:607–626Google Scholar
  50. Mulder T, Savoye B, Syvitski JPM (1997) Numerical modelling of a mid-sized gravity flow: the 1979 Nice turbidity current (dynamics, processes, sediment budget and seafloor impact). Sedimentology 44:305–326CrossRefGoogle Scholar
  51. Mulder T, Savoye B, Piper DJW, Syvitski JPM (1998) The Var submarine sedimentary system: understanding Holocene sediment delivery processes and their importance to the geological record. In: Stocker MS, Evans D, Cramp A (eds) Geological processes on continental margins: sedimentation, mass-wasting and stability. Geological Society Special Publication, London, pp 146–166Google Scholar
  52. Mulder T, Migeon S, Savoye B, Faugeres J-C (2001a) Inversely graded turbidite sequences in the deep Mediterranean: a record of deposits from flood-generated turbidity currents? Geo Mar Lett 21:86–93CrossRefGoogle Scholar
  53. Mulder T, Migeon S, Savoye B, Jouanneau J-M (2001b) Twentieth century floods recorded in the deep Mediterranean sediments. Geology 29(11):1011–1014CrossRefGoogle Scholar
  54. Piper DJW, Savoye B (1993) Processes of late quaternary turbidity current flow and deposition on the Var deep-sea fan, north-west Mediterranean Sea. Sedimentology 40:557–582CrossRefGoogle Scholar
  55. Piper DJW, Pirmez C, Manley PL, Long D, Flood RD, Normark WR, Showers W (1997) Mass-transport deposits of the Amazon Fan, In: Flood RD, Piper DJW, Klaus A, Peterson LC (eds) Proceedings of the ocean drilling program, scientific results. pp 109–146Google Scholar
  56. Piper DJW, Cochonat P, Morrison ML (1999) The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentology 46:79–97CrossRefGoogle Scholar
  57. Piper DJW, Mosher DC, Gauley B-J, Jenner KA, Campbell DC (2003) The chronology and recurrence of submarine mass movements on the continental slope off southeastern Canada. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Kluwer Academic Publishers, Dordrecht, pp 299–306CrossRefGoogle Scholar
  58. Réhault J-P, Boillot G, Mauffret A (1984) The western Mediterranean basin geological evolution. Mar Geol 55:447–477CrossRefGoogle Scholar
  59. Rollet N, Déverchère J, Beslier M-O, Guennoc P, Réhault J-P, Sosson M, Truffert C (2002) Back arc extension, tectonic inheritance and volcanism in the Ligurian sea, Western Mediterranean. Tectonics 21Google Scholar
  60. Sage F, Von Gronefeld G, Déverchère J, Gaullier V, Maillard A, Gorini C (2005) Seismic evidence for Messinian detrital deposits at the western Sardinia margin, northwestern Mediterranean. Marine Petroleum Geol 22:757–773CrossRefGoogle Scholar
  61. Savoye B, Piper DJW (1991) The Messinian event on the margin of the Mediterranean Sea in the Nice area, southern France. Mar Geol 97:279–304CrossRefGoogle Scholar
  62. Savoye B, Piper DJW, Droz L (1993) Plio-Pleistocene evolution of the Var deep-sea fan off the French Riviera. Marine and Petroleum Geology 10:550–571CrossRefGoogle Scholar
  63. St-Onge G, Mulder T, Piper DJW, Hillaire-Marcel C, Stoner JS (2004) Earthquake and flood-induced turbidites in the Saguenay Fjord (Québec): a Holocene paleoseismicity record. Quat Sci Rev 23:283–294CrossRefGoogle Scholar
  64. Strzerzynski P, Déverchère J, Cattaneo A, Domzig A, Yelles K, Mercier de Lepinay B, Babonneau N, Boudiaf A (2010) Tectonic inheritance and Pliocene-Pleistocene inversion of the Algerian margin around Algiers: insights from multibeam and seismic reflection data. Tectonics 29:TC2008. doi: 10.1029/2009TC002547 CrossRefGoogle Scholar
  65. Sultan N, Cochonat P, Foucher J-P, Mienert J (2004a) Effect of gas hydrates melting on seafloor slope instability. Mar Geol 213:379–401CrossRefGoogle Scholar
  66. Sultan N et al (2004b) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar Geol 213:291–321CrossRefGoogle Scholar
  67. Ten Brink US, Lee HJ, Geist EL, Twichell DC (2009) Assessment of tsunami hazard to the U.S. East Coast using relationships between submarine landslides and earthquakes. Mar Geol 264:65–73CrossRefGoogle Scholar
  68. Urgeles R, Canals M, Baraza J, Alonso B, Masson DG (1997) The most recent megalandslides of the Canary Islands: El Golfo debris avalanche and Canary debris flow, west El Hierro Island. J Geophys Res 102(B9):20,305–320,323Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sébastien Migeon
    • 1
    Email author
  • Antonio Cattaneo
    • 2
  • Virginie Hassoun
    • 1
  • Christophe Larroque
    • 3
  • Nicola Corradi
    • 4
  • Francesco Fanucci
    • 5
  • Alexandre Dano
    • 1
  • Bernard Mercier de Lepinay
    • 3
  • Françoise Sage
    • 1
  • Christian Gorini
    • 6
  1. 1.UMR GéoAzurUniversité de Nice-Sophia Antipolis, CNRS, OCAVillefrance/MerFrance
  2. 2.IFREMERPlouzanéFrance
  3. 3.UMR GéoAzurUniversité de Nice-Sophia Antipolis, CNRS, OCAValbonneFrance
  4. 4.University of GenovaGenoaItaly
  5. 5.University of TriesteDiGeItaly
  6. 6.UMR iSTePUniversité Pierre et Marie CurieParis cedex05France

Personalised recommendations