Skip to main content
Log in

Seismic stratigraphy and structure of the Northland Plateau and the development of the Vening Meinesz transform margin, SW Pacific Ocean

  • Original Research Paper
  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

The Northland Plateau and the Vening Meinesz “Fracture” Zone (VMFZ), separating southwest Pacific backarc basins from New Zealand Mesozoic crust, are investigated with new data. The 12–16 km thick Plateau comprises a volcanic outer plateau and an inner plateau sedimentary basin. The outer plateau has a positive magnetic anomaly like that of the Three Kings Ridge. A rift margin was found between the Three Kings Ridge and the South Fiji Basin. Beneath the inner plateau basin, is a thin body interpreted as allochthon and parautochthon, which probably includes basalt. The basin appears to have been created by Early Miocene mainly transtensive faulting, which closely followed obduction of the allochthon and was coeval with arc volcanism. VMFZ faulting was eventually concentrated along the edge of the continental shelf and upper slope. Consequently arc volcanoes in a chain dividing the inner and outer plateau are undeformed whereas volcanoes, in various stages of burial, within the basin and along the base of the upper slope are generally faulted. Deformed and flat-lying Lower Miocene volcanogenic sedimentary rocks are intimately associated with the volcanoes and the top of the allochthon; Middle Miocene to Recent units are, respectively, mildly deformed to flat-lying, calcareous and turbiditic. Many parts of the inner plateau basin were at or above sea level in the Early Miocene, apparently as isolated highs that later subsided differentially to 500–2,000 m below sea level. A mild, Middle Miocene compressive phase might correlate with events of the Reinga and Wanganella ridges to the west. Our results agree with both arc collision and arc unzipping regional kinematic models. We present a continental margin model that begins at the end of the obduction phase. Eastward rifting of the Norfolk Basin, orthogonal to the strike of the Norfolk and Three Kings ridges, caused the Northland Plateau to tear obliquely from the Reinga Ridge portion of the margin, initiating the inner plateau basin and the Cavalli core complex. Subsequent N115° extension and spreading parallel with the Cook Fracture Zone completed the southeastward translation of the Three Kings Ridge and Northland Plateau and further opened the inner plateau basin, leaving a complex dextral transform volcanic margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adams CG (1984) Neogene larger foraminifera, evolutionary and geological events in the context of datum planes. In: Ikebe N, Tsuchi R (eds) Pacific Neogene datum Planes. Contrib Biostratigr Chronol. Univ Tokyo Press, Tokyo, pp 47–67

    Google Scholar 

  • Aitchison JC, Clarke GL, Meffre S, Cluzel D (1995) Eocene arc-continent collision in New Caledonia and implications for regional Southwest Pacific tectonic evolution. Geology 23(2):161–164. doi:10.1130/0091-7613(1995)023<0161:EACCIN>2.3.CO;2

    Article  Google Scholar 

  • Australian Gulf Oil (1973) Geophysical data from M.V. GULFREX cruises 94-98, October 1972–January 1973. Inst Geol and Nucl Sci unpubl open-file petroleum rep. 614. Lower Hutt, New Zealand

  • Ballance PF (1999) Simplification of the Southwest Pacific Neogene arcs: inherited complexity and control by a retreating pole of rotation. In: MacNiocaill C, Ryan D (eds) Continental tectonics. Geol Soc Lond Spec Pub, vol 164, pp 7–19

  • Ballance PF, Spörli KB (1979) Northland Allochthon. J R Soc N Z 9:259–275

    Google Scholar 

  • Ballance PF, Ablaev A, Pushchin I, Pletnev SP, Birylina MG, Tetsumaru I, Follas HA, Gibson GW (1999) Morphology and history of the Kermadec trench-arc-back-arc-basin-remnant arc system at 30 to 32°S: geophysical profile, microfossil and K-Ar data. Mar Geol 159:35–62. doi:10.1016/S0025-3227(98)00206-0

    Article  Google Scholar 

  • Berggren A, Kent DV, Swisher CC, Aubry M-P (1995) A revised Cenozoic geochronology and chronostratigraphy. In: Berggren WA, Kent DV, Aubry M-P, Hardenbol J (eds) Geochronology, time scales and global stratigraphic correlation. Soc Sediment Geol (SEPM) Spec Pub, vol 54, pp 129–212

  • Bernardel G, Carson LJ, Meffre S, Symonds PA, Mauffret A (2002) Geological and morphological framework of the Norfolk Ridge to Three Kings Ridge region. Geosci Aust Rec 2002(08)

  • Bleil U, Petersen N (1983) Variations in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts. Nature 301(5899):384–388. doi:10.1038/301384a0

    Article  Google Scholar 

  • Blow WH (1969) Late Middle Eocene to recent planktonic foraminiferal biostratigraphy. In: Brönnimann P, Renz HH (eds) Proceedings of first international conference planktonic microfossils, Geneva, 1967, vol 1, pp 199–421 (EJ Brill, Leiden)

  • Bolli HM, Saunders JB (1985) Oligocene to Holocene low latitude planktic foraminifera. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 155–262

    Google Scholar 

  • Brook FJ, Thrasher GP (1991) Cretaceous and Cenozoic geology of northernmost New Zealand. N Z Geol Surv Rec 41

  • Brothers RN (1984) Subduction regression and oceanward migration of volcanism, North Island, New Zealand. Nature 309:698–700

    Article  Google Scholar 

  • Brothers RN (1986) Upper tertiary and quaternary volcanism and zone regression, North Island, New Zealand. J R Soc N Z 16:275–298

    Google Scholar 

  • Campbell AS, Clark BL (1944) Miocene radiolarian faunas from southern California. Geol Soc Am Spec Pap 51:1–76

    Google Scholar 

  • Cassidy J (1993) Tectonic implications of paleomagnetic data from the Northland ophiolite, New Zealand. Tectonophysics 223:199–211

    Article  Google Scholar 

  • Chaproniere GCH (1975) Palaeoecology of Oligo-Miocene larger Foraminiferida, Australia. Alcheringa 1:37–58. doi:10.1080/03115517508619479

    Article  Google Scholar 

  • Chaproniere GCH (1984) Oligocene and Miocene larger Foraminiferida from Australia and New Zealand. Bull Bureau of Mineral Resources. Geol Geophys Aust 188:1–98

    Google Scholar 

  • Cluzel D, Aitchison JC, Picard C (2001) Tectonic accretion and underplating of mafic terranes in the Late Eocene intracratonic fore-arc of New Caledonia (Southwest Pacific): geodynamic implications. Tectonophysics 340:23–59. doi:10.1016/S0040-1951(01)00148-2

    Article  Google Scholar 

  • Cluzel D, Meffre S, Maurizot P, Crawford AJ (2006) Earliest Eocene (53 Ma) convergence in the Southwest Pacific: evidence from pre-obduction dikes in the ophiolite of New Caledonia. Terra Nova 18:395–402. doi:10.1111/j.1365-3121.2006.00704.x

    Article  Google Scholar 

  • Cole JW, Gill JB, Woodhall D (1985) Petrologic history of the Lau Ridge, Fiji. In: Scholl DW, Vallier TL (eds) Geology and offshore resources of Pacific island arcs; Tonga region, Circum-Pac. Council for Energy and Min Resour Earth Sci Ser 2, pp 379–414

  • Cooper RA (ed) (2004) The New Zealand geological timescale. Inst Geol and Nucl Sci Monogr 22. Lower Hutt, New Zealand

  • Crawford AJ, Meffre S, Symonds PA (2003) 120 to 0 Ma tectonic evolution of the southwest Pacific and analogous geological evolution of the 600 to 220 Ma Tasman Fold Belt System. In: Hillis RR, Muller RD (eds) Evolution and dynamics of the Australian plate. Geol Soc Australia Spec Pub 22 and Geol Soc America Spec Pap 372, pp 383–403

  • Crawford AJ, Meffre S, Baker MJ, Quilty PG, O’Brien PE, Exon NF, Bernardel G, Herzer R (2004) Tectonic development of the SW Pacific 120-0 Ma: implications from the ‘Norfolk’n Around’ cruise of the southern surveyor to the Norfolk Basin-New Caledonia Ridge region, March 2003. In: McPhie J, McGoldrick P (eds) Abstr 17th Aust Geol Convent, Hobart, (8–13 Feb) Geol Soc Aust Abstr 73, p 201

  • Davey FJ (1974) Magnetic anomalies off the west coast of Northland, New Zealand. J R Soc N Z 4(2):203–216

    Google Scholar 

  • Davey FJ (1982) The structure of the South Fiji Basin. Tectonophysics 87:185–241. doi:10.1016/0040-1951(82)90227-X

    Article  Google Scholar 

  • DiCaprio L, Müller RD, Gurnis M, Goncharov A (2009) Linking active margin dynamics to overriding plate deformation: synthesizing geophysical images with geological data from the Norfolk Basin. Geochem Geophys Geosyst 10(1):Q01004. doi:10.1029/2008GC002222 ISSN: 1525-2027

    Article  Google Scholar 

  • Eade JV (1988) The Norfolk ridge system and its margins. In: Nairn AEM, Stehli FG, Uyeda S (eds) The Pacific Ocean. The ocean basins and margins, vol 7B. Plenum, New York, pp 303–324

    Google Scholar 

  • Edbrooke SW (compil.) (2001) Geology of the Auckland area. Inst Geol and Nucl Sci 1:250,000 geol map 3. 1 sheet + 74 p. Lower Hutt, New Zealand

  • Edbrooke SW, Sykes R, Pocknall DT (1994) Geology of the Waikato coal measures, Waikato coal region, New Zealand. Inst Geol and Nucl Sci monogr 6, Lower Hutt, 8 maps, 236 p

  • Fraser G (2002) Three Kings Ridge 40Ar/39Ar geochronology report. Geosci Aust Prof Opin 2002(01)

  • Gamble JA, Wright IC, Baker JA (1993) Seafloor geology and petrology in the oceanic to continental transition zone of the Kermadec-Havre-Taupo Volcanic Zone arc system, New Zealand. NZ J Geol Geophys 36:417–435

    Google Scholar 

  • Hayward BW (1993) The tempestuous 10 million year life of a double arc and intra-arc basin–New Zealand’s Northland Basin in the Early Miocene. In: Ballance PF (ed) South Pacific sedimentary basins, sedimentary basins of the World, vol 2. Elsevier, Amsterdam, pp 113–142

    Google Scholar 

  • Hayward BW, Brook FJ, Isaac MJ (1989) Cretaceous to middle tertiary stratigraphy, paleontology and tectonic history of Northland, New Zealand. R Soc N Z Bull 26:47–64

    Google Scholar 

  • Hayward BW, Black PM, Smith IEM, Ballance PF, Itaya T, Doi M, Takagi M, Bergman S, Adams CJ, Herzer RH, Robertson DJ (2001) K-Ar ages of early Miocene arc-type volcanoes in northern New Zealand. NZ J Geol Geophys 44:285–311

    Google Scholar 

  • Herzer RH (1995) Seismic stratigraphy of a buried volcanic arc, offshore Northland, New Zealand and implications for neogene subduction. Mar Pet Geol 12(5):511–531. doi:10.1016/0264-8172(95)91506-K

    Article  Google Scholar 

  • Herzer RH, Isaac MJ (1992) The size of the Northland Allochthon. Res. Notes. N Z Geol Surv Rec 44:37–42

    Google Scholar 

  • Herzer RH, Mascle J (1996) Anatomy of a continent-back-arc transform–the Vening Meinesz Fracture Zone northwest of New Zealand. Mar Geophys Res 18:401–427. doi:10.1007/BF00286087

    Article  Google Scholar 

  • Herzer RH, Mortimer N (1998) Miocene spreading in the South Fiji Basin? Geol Soc N Z Newslett 117:10–16

    Google Scholar 

  • Herzer RH, Chaproniere GCH, Edwards AR, Hollis CJ, Pelletier B, Raine JI, Scott GH, Stagpoole V, Strong CP, Symonds P, Wilson GJ, Zhu H (1997) Seismic stratigraphy and structural history of the Reinga Basin and its margins, southern Norfolk Ridge system. NZ J Geol Geophys 40:425–451

    Google Scholar 

  • Herzer RH, Mascle J, Davy BW, Ruellan E, Mortimer N, Laporte C, Duxfield A (2000) New constraints on the New Zealand-South Fiji Basin continent-back-arc margin. Comptes Rendus Acad Sci Paris Sci Terre Planetes 330:701–708

    Google Scholar 

  • Herzer R, Mortimer N, Davy B, Mascle J, Laporte C, Ruellan E (2001) Contrasting back-arc basins north of New Zealand: progression from active margin to intra-oceanic subduction, or separate subduction systems? [Abstr] Eur Geophys Soc XXVI Gen Assem, Nice, France 25–30 March 2001. Geophys Res Abstr 3

  • Herzer R, Davy B, Mortimer N, Laporte-Magoni C, Barker D (2004) Cruise Report GNS Cruise SF0202 “Onside II” (Offshore Northland Seismic and Dredging Expedition II), 28 July–7 August 2002, Inst Geol and Nucl Sci file report 2004/01

  • Hollis CJ (1997) Cretaceous-paleocene Radiolaria from eastern Marlborough, New Zealand. Inst Geol and Nucl Sci Monogr 17, 152 p

    Google Scholar 

  • Isaac MJ, Herzer RH, Brook FJ, Hayward BW (1994) Cretaceous and Cenozoic sedimentary basins of Northland, New Zealand: Inst Geol and Nucl Sci Monogr 8, 203 p

  • Jenkins DG (1985) Southern mid-latitude Paleocene to Holocene planktic foraminifera. In: Bolli HM, Saunders JB, Perch-Nielson K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 263–282

    Google Scholar 

  • Jenkins DG (1993a) Cenozoic southern middle and high latitude biostratigraphy and chronostratigraphy based on planktonic foraminifera. In: Kennett JP, Warnke DA (eds) The Antarctic Paleoenvironment: a perspective on global change. Antarctic Res Ser 60, pp 125–144

  • Jenkins DG (1993b) The evolution of the Cenozoic southern high- and mid-latitude planktonic foraminiferal faunas. In: Kennett JP, Warnke DA (eds) The Antarctic Paleoenvironment: a perspective on global change. Antarctic Res Ser 60, pp 175–194

  • Kamp PJJ (1984) Neogene and quaternary extent and geometry of the subducted Pacific plate beneath North Island, New Zealand: implications for Kaikoura tectonics. Tectonophysics 108:241–266

    Article  Google Scholar 

  • Kennett JP, Srinivasan MS (1983) Neogene Planktonic Foraminifera: a phylogenetic atlas. Hutchinson Ross Publishing Co., Stroudsburg

    Google Scholar 

  • King PR, Thrasher GP (1996) Cretaceous-Cenozoic geology and petroleum systems of the Taranaki Basin, New Zealand. Inst Geoland Nucl Sci Monogr 13. 6 Enclosures. Lower Hutt, New Zealand, 243 p

  • Kroenke LW, Dupont J (1982) Subduction-obduction: a possible north-south transition along the west flank of the Three Kings Ridge. Geo-Mar Lett 2:011–016

    Article  Google Scholar 

  • Kroenke LW, Eade JV (1982) The Three Kings Ridge: a west-facing arc. Geo-Mar Lett 2:005–010

    Article  Google Scholar 

  • Launay J, Dupont J, Lapouille A (1982) The Three Kings Ridge and Norfolk Basin (Southwest Pacific): an attempt at a structural interpretation. S Pac Mar Geol Not 2(8):121–130

    Google Scholar 

  • Malahoff A, Feden RH, Fleming S (1982) Magnetic anomalies and tectonic fabric of marginal basins north of New Zealand. J Geophys Res 87(B5):4109–4125

    Article  Google Scholar 

  • Martini E (1971) Standard tertiary and quaternary calcareous nannoplankton zonation. Proceedings of planktonic conference 2(2):739–777

  • Mauffret A, Symonds P, Benkhelil J, Bernardel G, Buchanan C, D’Acremont E, Gorini C, Lafoy Y, Nercessian A, Ryan J, Smith N, Van de Beuque S (2001) Collaborative Australia/France multibeam seafloor mapping survey–Norfolk Ridge to Three Kings Ridge region: FAUST-2, preliminary results. Geosci Aust Rec 2001/27

  • Maus S, Macmillan S, Lowes F, Bondar T, Anonymous (2005) Evaluation of candidate geomagnetic field models for the 10th generation of IGRF. Earth Planets Space 57:1173–1181

    Google Scholar 

  • McGonigal KL, Wei W (2003) Data report: Miocene calcareous nannofossil biostratigraphy, ODP Leg 189, Tasmanian Seaway. Proceedings of the Ocean Drilling Program; scientific results. In: Exon NF, Kennett JP, Malone MJ (eds) Proc ODP, Sci Results, 189 (online) Available from World Wide Web: http://www-odp.tamu.edu/publications/189_SR/110/110.htm. [Cited 2005-03-31]

  • Meffre S, Crawford AJ, Quilty PG (2006) Arc-continent collision forming a large island between New Caledonia and New Zealand in the Oligocene. Australian Earth Sci Convent (2–6 July), Melbourne, Australia, Extended Abstr, 3 pp

  • Meissner R (1986) The continental crust, a geophysical approach. International geophysics series, vol 34. Academic Press, Orlando 426 p

    Google Scholar 

  • Mitchell JS, Eade JV (1990a) North Cape Bathymetry, N Z Oceanogr Inst Chart, Coastal Series, 1:200,000

  • Mitchell JS, Eade JV (1990b) Three Kings Bathymetry, N Z Oceanogr Inst Chart, Coastal Series, 1:200,000

  • Mobil International Oil Co. (1979) Reprocessed Mobil lines (from 1972 survey). Inst Geol and Nucl Sci unpubl open-file pet. rep. 738. Lower Hutt, New Zealand

  • Morgans HEG, Scott GH, Beu AG, Graham IJ, Mumme TC, St George W, Strong CP (1996) New Zealand Cenozoic Timescale (version 11/96). Inst Geol and Nucl Sci, Sci Rep 96/38:1–12

  • Mortimer N (2004) New Zealand’s geological foundations. Gondwana Res 7:261–272

    Article  Google Scholar 

  • Mortimer N, Herzer RH (2000) Diverse SW Pacific Volcanotectonic Architecture: new seismic and petrologic data favour simple Miocene model, EOS [Abstr] Am Geophys Union Fall Meeting, San Francisco 81(48):F1088

  • Mortimer N, Herzer RH, Gans PB, Parkinson DL, Seward D (1998) Basement geology from Three Kings Ridge to West Norfolk Ridge, southwest Pacific Ocean: evidence from petrology, geochemistry and isotopic dating of dredge samples. Mar Geol 148:135–162

    Article  Google Scholar 

  • Mortimer N, Herzer RH, Walker NW, Calvert AT, Seward D, Chaproniere GCH (2003) Cavalli Seamount, Northland Plateau, SW Pacific Ocean: a Miocene metamorphic core complex? J Geol Soc Lond 160:1–13

    Article  Google Scholar 

  • Mortimer N, Herzer RH, Gans PB, Laporte-Magoni C, Calvert AT, Bosch D (2007) Oligocene-Miocene tectonic evolution of the South Fiji Basin and Northland Plateau, SW Pacific Ocean: evidence from petrology and dating of dredged rocks. Mar Geol 237:1–24

    Article  Google Scholar 

  • Mortimer N, Dunlap WJ, Palin JM, Herzer RH, Hauff F, Clark M (2008) Cavalli Seamount revisited: ultra-fast early Miocene exhumation of Cavalli Seamount, Northland Plateau, Southwest Pacific Ocean. N Z J Geol Geophys 51:29–42

    Google Scholar 

  • Nicholson KN (1999) Tangihua Complex, New Zealand: implications for Cretaceous-Oligocene convergent margin processes in the SW Pacific from comparisons with the Poya terrane, New Caledonia. Unpublished, PhD thesis, Univ Auckland, New Zealand

  • Nicholson KN, Black PM (2004) Cretaceous to early tertiary basaltic volcanism in the Far North of New Zealand: geochemical associations and their tectonic significance. N Z J Geol Geophys 47:437–446

    Google Scholar 

  • Nicholson KN, Black PM, Picard C (2000a) Geochemistry and tectonic significance of the Tangihua Ophiolite Complex, New Zealand. Tectonophysics 321:1–15

    Article  Google Scholar 

  • Nicholson KN, Picard C, Black PM (2000b) A comparative study of Late Cretaceous ophiolitic basalts from New Zealand and New Caledonia: implications for the tectonic evolution of the SW Pacific. Tectonophysics 327:157–171

    Article  Google Scholar 

  • Nicholson KN, Black PM, Picard C, Cooper P, Hall C, Itaya T (2007) Alteration, age, and emplacement of the Tangihua Complex Ophiolite, New Zealand. N Z J Geol Geophys 50:151–164

    Google Scholar 

  • Nigrini C, Lombari G (1984) A guide to Miocene Radiolaria. Cushman Foundation for Foraminiferal Research, Spec Pub 22: i–xvii, S1–S102, N1–N206

  • Okada H, Bukry D (1980) Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Mar Micropaleontol 5(3):321–325

    Article  Google Scholar 

  • Olsson RK, Hemleben C, Berggren WA, Huber BT (1999) Atlas of Paleocene Planktonic Foraminifera. Smithsonian Contrib Paleobiol, vol 85, 252 p

  • Perch-Nielsen K (1985) Cenozoic calcaerous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielson K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 427–554

    Google Scholar 

  • Rait GJ (2000a) Thrust transport directions in the Northland Allochthon, New Zealand. N Z J Geol Geophys 43:271–288

    Google Scholar 

  • Rait GJ (2000b) Amounts and rates of transport of the Northland and East Coast ophiolites. Geol Soc N Z Misc Pub 108A:129, GSNZ/NZGS Joint Annual Conf Prog and Abstr, Wellington

  • Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS-1 satellite imagery. J Geophys Res 102(B5):10039–10054

    Article  Google Scholar 

  • Sanfilippo A, Westberg-Smith MJ, Riedel WR (1985) Cenozoic Radiolaria. In: Bolli HM, Saunders JB, Perch-Nielson K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 631–712

    Google Scholar 

  • Schellart WP (2007) North-eastward subduction followed by slab detachment to explain ophiolite obduction and Early Miocene volcanism in Northland, New Zealand. Terra Nova 19:211–218

    Article  Google Scholar 

  • Schellart WP, Lister GS, Toy VG (2006) A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. Earth Sci Rev 76:191–233

    Article  Google Scholar 

  • Sdrolias M, Muller RD, Gaina C (2003) Tectonic evolution of the southwest Pacific using constraints from back-arc basins. In: Hillis RR, Muller RD (eds) Evolution and dynamics of the Australian plate. Geol Soc Aust Spec Pub 22 and Geol Soc Am Spec Pap 372, pp 343–359

  • Sdrolias M, Muller RD, Mauffret A, Bernardel G (2004) Enigmatic formation of the Norfolk Basin, SW Pacific: a plume influence on back-arc extension. Geochem Geophys Geosyst 5(6):Q06005. doi:10.1029/2003GC000643

    Article  Google Scholar 

  • Shipboard Scientific Party (2001) Explanatory Notes. In: Exon NF, Kennett JP, Malone MJ et al (eds) The Tasmanian Gateway: Cenozoic climate and oceanographic development. Proc ODP, Init Repts 189:1–58 [CD-ROM] Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. doi:10.2973/odp.proc.ir.189.102.2001

  • Smith IEM, Black PM, Itaya T (1995) Inception and evolution of Cenozoic arc-type volcanism in northern New Zealand. In: Mauk JL, St George JD (eds) Proc 1995 PACRIM Congr, Auckland. Aust Inst Min Metal Pub Ser 9/95, pp 563–567

  • Stern TA et al (2006) Subduction evolution and mantle dynamics at a continental margin: Central North Island, New Zealand. Rev Geophys 44(4):RG4002. doi:10.1029/2003GC000643

    Article  Google Scholar 

  • Stott LD, Kennett JP (1990) Antarctic Paleogene planktonic foraminifer biostratigraphy: ODP Leg 113, Sites 689 and 690. Proc Ocean Drilling Prog, Sci Results, vol 113, pp 549–569

  • Summerhayes CP (1969) Submarine geology and geomorphology off northern New Zealand. N Z J Geol Geophys 12:507–525

    Google Scholar 

  • Sutherland R (1999) Basement geology and tectonic development of the greater New Zealand region: an interpretation from regional magnetic data. Tectonophysics 308(3):341–362

    Article  Google Scholar 

  • Sutherland R, Hollis C (2001) Cretaceous demise of the Moa plate and strike-slip motion at the Gondwana margin. Geology 29(3):279–282

    Article  Google Scholar 

  • Thrasher GP (1986) Basement structure and sediment thickness beneath the continental shelf of the Hauraki Gulf and offshore Coromandel region, New Zealand. N Z J Geol Geophys 29:41–50

    Google Scholar 

  • Thrasher GP (1988) Subsurface geology of the continental shelf, Bay of Plenty to the Three Kings Islands, New Zealand. N Z Geol Surv Rep G133

  • Tivey MA (1996) Vertical magnetic structure of ocean crust determined from near-bottom magnetic field measurements. J Geophys Res 101(B9):20275–20296

    Article  Google Scholar 

  • Toumarkine M, Luterbacher H (1985) Paleocene and Eocene planktic foraminifera. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 87–154

    Google Scholar 

  • Toy VG, Spörli KB, Black, PM, Nicholson KN (2002) Mount Camel Terrane: exotic source area and new evidence for an accretionary precursor to the Northland Allochthon. 2002 Western Pacific Geophys Meeting, 9–12 July 2002, Suppl EOS, Trans AGU 83(22):WP92

  • Whattam SA, Malpas JG, Ali JR, Smith IEM, Lo CH (2004) Origin of the Northland Ophiolite, northern New Zealand: discussion of new data and reassessment of the model. N Z J Geolog Geophys 47:383–389

    Google Scholar 

  • Whattam SA, Malpas J, Ali JR, Lo CH, Smith IEM (2005) Formation and emplacement of the Northland ophiolite, northern New Zealand: SW Pacific tectonic implications. J Geol Soc Lond 162:225–241

    Article  Google Scholar 

  • Whattam SA, Malpas J, Ali JR, Smith IEM (2008) New SW Pacific tectonic model: cyclical intraoceanic magmatic arc construction and near-coeval emplacement along the Australia-Pacific margin in the Cenozoic. Geochemi Geophys Geosyst 9(3):Q03021. doi:10.1029/2007GC001710

    Article  Google Scholar 

  • Young JR (1998) Neogene. In: Bown PR (ed) Calcareous Nannofossil Biostratigraphy. British Micropalaeontol Soc Pub Ser. Kluwer, The Netherlands. pp 225–265

Download references

Acknowledgments

We thank the following people and organisations: shipboard parties of GNS cruises SF9901 (ONSIDE I) and SF0202 (ONSIDE II), GNS technicians Kim Rose, Anya Duxfield and scientist Dan Barker, NIWA seismic technicians Steve Wilcox and Mike Stevens, Université de Nouvelle Calédonie scientist Christine Laporte-Magoni, CNRS Géosciences Azur scientists Jean Mascle and Etienne Ruellan, Captains Andrew Leachman and Roger Goodison and crew of R/V Tangaroa, captain and crew of R/V Southern Surveyor cruise SS03-01 (Norfolk’n Around), GNS scientists Graeme Wilson, Ian Raine and Percy Strong for additional micropaleontology, Vaughan Stagpoole for compilation of the magnetic map, Fred Davey and Andy Nicol for constructive discussions, GNS technicians Michelle Dow, Neville Orr, John Simes and Roger Tremain for laboratory work. This work was funded by the Foundation for Research Science and Technology (New Zealand), and travel grants from the French Ministère des Affaires Etrangères.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Herzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzer, R.H., Davy, B.W., Mortimer, N. et al. Seismic stratigraphy and structure of the Northland Plateau and the development of the Vening Meinesz transform margin, SW Pacific Ocean. Mar Geophys Res 30, 21–60 (2009). https://doi.org/10.1007/s11001-009-9065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-009-9065-1

Keywords

Navigation