Marine Geophysical Researches

, Volume 28, Issue 1, pp 27–41 | Cite as

Gravity and S-wave modelling across the Jan Mayen Ridge, North Atlantic; implications for crustal lithology

  • Rolf MjeldeEmail author
  • Inger Eckhoff
  • Ståle Solbakken
  • Shuichi Kodaira
  • Hideki Shimamura
  • Karl Gunnarsson
  • Ayako Nakanishi
  • Hajime Shiobara
Original Paper


The horizontal components from fourteen Ocean Bottom Seismometers deployed along four profiles focused along the western margin of the Jan Mayen microcontinent, North Atlantic, have been modelled with regard to S-waves, based on P-wave models obtained earlier. The seismic models have furthermore been constrained by 2D gravity modelling. High V p/V s-ratios (2.3–7.9) within the Cenozoic sedimentary section are attributed to significant porosities, whereas V p/V s-ratios in the order of 1.9–2.2 for the Mesozoic and Paleozoic sedimentary rocks indicate shale-dominated lithology throughout the area. The eastern side of the Jan Mayen Ridge is interpreted as a passive, volcanic margin, based on relatively high crustal V p/V s-ratios (1.9), whereas lower V p/V s-ratios (1.75–1.8) suggest the presence of intermediate composition crust and non-volcanic margin on the western side of the ridge. In the westernmost part of the Jan Mayen Basin, slightly increased upper mantle V p/V s-ratios may indicate some degree of serpentization of upper mantle peridotites.


Gravity Modelling Mafic Intrusion Ocean Bottom Seismograph Crystalline Crust Paleozoic Sedimentary Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the crew of R/V Håkon Mosby and the technical staff and students from the Department of Earth Science, University of Bergen, and the Laboratory for Ocean Bottom Seismology, Hokkaido University, for their support and skills during the acquisition of the data. We acknowledge Icelandic, Danish and Norwegian authorities for providing the necessary permits and information for the survey. A part of the survey was funded by the Ministry of Education, Science and Culture of Japan.


  1. Birch F (1961) The velocity of compressional waves in rocks to 10 kilobars, Part 2. J Geophys Res 66:2199–2224Google Scholar
  2. Bown JW, White RS (1995) Effect of finite extension rate of melt generation at rifted contintental margins. J Geophys Res 100:18011–18029CrossRefGoogle Scholar
  3. Breivik AJ, Mjelde R, Faleide JI, Murai Y (2006) Rates of continental breakup magmatism and seafloor spreading in the Norway Basin-Iceland Plume interaction. J Geophys Res 111(B07102):1–17Google Scholar
  4. Breivik AJ, Verhoef J, Faleide JI (1999) Effect of thermal contrasts on gravity modelling at passive margins: results from the western Barents Sea. J Geophys Res 104:15293–15311CrossRefGoogle Scholar
  5. Bromirski PD, Frazer LN, Dunnebier FK (1992) Sediment shear Q from airgun OBS data. Geophys J Int 110:465–485Google Scholar
  6. Chian D, Louden KE (1994) The continent-ocean crustal transition across the southwest Greenland margin. J Geophys Res 99:9117–9135CrossRefGoogle Scholar
  7. Christensen N (1996) Poissons’s ratio and crustal seismology. J Geophys Res 101:3139–3156CrossRefGoogle Scholar
  8. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global review. J Geophys Res 100:9761–9788CrossRefGoogle Scholar
  9. Chung TW, Hirata N, Sato R (1990) Two-dimensional P- and S-wave velocity structure of the Yamato Basin, the southern Japan sea, from refraction data collected by an ocean bottom seismographic array. J Phys Earth 38:99–147Google Scholar
  10. Digranes P, Mjelde R, Kodaira S, Shimamura H, Kanazawa T, Shiobara H, Berg EW (1996) Modelling shear waves in OBS data from the Vøring Basin (Northern Norway) by 2-D ray-tracing. Pure Appl Geophys 4:611–629CrossRefGoogle Scholar
  11. Domenico SN (1984) Rock lithology and porosity determination from shear and compressional wave velocity. Geophysics 49:1188–1195CrossRefGoogle Scholar
  12. Grønlie G, Chapmann M, Talwani M (1979) Jan Mayen Ridge and Iceland Plateau: origin and evolution. Norsk Polarinstitutt Skrift 170:201–224Google Scholar
  13. Henriksen N, Higgins AK, Christoffersen M (2003) Caledonian Orogen East Greenland 70–82 N, a compilation of lithostructural data. The geological society of Denmark and Greenland, CopenhagenGoogle Scholar
  14. Holbrook WS, Mooney WD, Christensen NJ (1992) Seismic velocity structure of the deep continental crust. In: Fountain D, Arculus R, Kay RW (eds) Continental lower crust. Elsevier, Amsterdam, pp 451–464Google Scholar
  15. Johansen B, Eldholm O, Talwani M, Stoffa PL, Buhl P (1988) Expanding spread profile at the northern Jan Mayen Ridge. Polar Res 6:95–104Google Scholar
  16. Kanazawa T, Shiobara H (1994) Newly developed ocean bottom seismometer. Program Abstract, Japan Earth and Planetory Science Joint Meeting 341 (in Japanese)Google Scholar
  17. Kodaira S, Mjelde R, Gunnarsson K, Shiobara H, Shimamura H (1998) Structure of the Jan Mayen micro-continent and implications for its evolution. Geophys J Int 132:383–400CrossRefGoogle Scholar
  18. Kodaira S, Mjelde R, Gunnarsson K, Shiobara H, Shimamura H (1997) Crustal structure of the Kolbeinsey Ridge, North Atlantic, obtained by use of ocean bottom seismographs. J Geophys Res 102:3131–3151CrossRefGoogle Scholar
  19. Kuvaas B, Kodaira S (1997) The formation of the Jan Mayen microcontinent: the missing pieze in the continental puzzle between the Møre-Vøring Basins and East Greenland. First Break 15(7):239–247Google Scholar
  20. Ludwig JW, Nafe JE, Drake CL (1970) Seismic refraction. In: Maxell AE (ed) The Sea 4. Wiley, New York, pp 53–84Google Scholar
  21. Minshull TA, Muller MR, Robinson CJ, White RS, Bickle MJ (1998) Is the oceanic Moho a serpentinitization front? In: Mills RA, Harrison, K (eds) Modern ocean floor processes and the geological record. Geological Society, London, pp 71–80. Special Publication 148Google Scholar
  22. Mjelde R, Aurvåg R, Kodaira S, Shimamura H, Gunnarsson K, Nakanishi A, Shiobara H (2002a) V p/V s-ratios from the central Kolbeinsey Ridge to the Jan Mayen Basin, North Atlantic; implications on lithology, porosity and present-day stress field. Marine Geophys Res 23:125–145Google Scholar
  23. Mjelde R, Fjellanger JP, Raum T, Digranes P, Kodaira S, Breivik A, Shimamura H (2002b) Where do P-S converions occur? Analysis of OBS-data from the NE Atlantic Margin. First Break 203:153–160Google Scholar
  24. Mjelde R, Kodaira S, Shimamura H (1995) OBS experiment Kolbeinsey Ridge - Jan Mayen Ridge, 2–21 May 1995, Cruise report, University of Bergen, 28 ppGoogle Scholar
  25. Mjelde R, Raum T, Digranes P, Shimamura H, Shiobara H, Kodaira S (2003) V p/V s-ratio along the Vøring Margin, NE Atlantic, derived from OBS-data: Implications on lithology and stress field. Tectonophysics 369:175–197CrossRefGoogle Scholar
  26. Mjelde R, Raum T, Myhren B, Shimamura H, Murai Y, Takanami T, Karpuz R, Naess U (2005) Continent-ocean transition on the Vøring Plateau, NE Atlantic, derived from densely sampled ocean bottom seismometer data. J Geophys Res 110(B05101):1–19Google Scholar
  27. Myhre AM (1984) Compilation of seismic velocity measurements aong the margins of the Norwegian-Greenland Sea. Norsk Polarinstitutt Skrift 180:46–67Google Scholar
  28. Myhre AM, Eldholm E, Sundvor E (1984) The Jan Mayen Ridge; present status. Polar Res 2:47–59Google Scholar
  29. Navrestad T, Jørgensen F (1979) Aeromagnetic investigations on the Jan Mayen Ridge. Norwegian Petroleum Society NSS9Google Scholar
  30. Neidell NS (1985) Land application of S waves. Geophysics: The Leading Edge of Exploration 11:32–44CrossRefGoogle Scholar
  31. Sato H, Ito K (2001) H 2 O fluid distribution in mantle rock at 1 GPa: constraints from Vs-Vp/Vs diagram, Bull Earthquake Res Inst Univ Tokyo 76:305–310Google Scholar
  32. Skogseid J, Eldholm O (1987) Early Cenozoic crust at the Norwegian continental margin and the conjugate Jan Mayen Ridge. J Geophys Res 92:11471–11491Google Scholar
  33. Sundvor E, Gidskehaug A, Myhre AM, Eldholm O (1979) Marine geophysical survey on the northern Jan Mayen Ridge. Seismological observatory, University of Bergen, Scientific report 6Google Scholar
  34. Talwani M, Eldholm O (1977) Evolution of the Norwegian-Greenland Sea. Geol Soc Am Bull 88:969–999CrossRefGoogle Scholar
  35. Tatham RH (1985) Shear waves and lithology. In: Dohr G (ed) Seismic shear waves, part b: applications. Geophysical Press, London-Amsterdam, pp 86–133Google Scholar
  36. Tatham RH, McCormac MD (1991) Rock physics measurements. In: Neitzel EB, Winterstein DF (eds) Multicomponent seismology in petroleum exploration. SEG investigation in geophysics series 6, pp 43–91Google Scholar
  37. Vogt PG, Johson GL, Kristjansson L (1980) Morphology and magnetic anomalies North of Iceland. J Geophys 47:67–80Google Scholar
  38. Weigel W, Flueh ER, Miller H, Butzke A, Deghani GA, Gebhardt V, Harder I, Hepper J, Jokat W, Klaschen D, Kreymann S, Schussler, S, Zhao Z (1995) Investigations of the East Greenland Continental Margin between 70 and 72 N by deep seismic sounding and gravity studies. Marine Geophys Res 17:167–199CrossRefGoogle Scholar
  39. White RS, McKenzie D (1989) Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729Google Scholar
  40. White RS, McKenzie D, O’ Nions RK (1992) Oceanic crustal thickness from seismic measurements and rare earth element inversions. J Geophys Res 97: 19683–19715 CrossRefGoogle Scholar
  41. Zelt CA, Smith RB (1992) Seismic traveltime inversions for 2-D crustal velocity structure, Geophysical. J Int 108:16–34Google Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  • Rolf Mjelde
    • 1
    Email author
  • Inger Eckhoff
    • 1
  • Ståle Solbakken
    • 1
  • Shuichi Kodaira
    • 2
    • 3
  • Hideki Shimamura
    • 2
  • Karl Gunnarsson
    • 4
  • Ayako Nakanishi
    • 2
    • 3
  • Hajime Shiobara
    • 2
    • 5
  1. 1.Department of Earth ScienceUniversity of BergenBergenNorway
  2. 2.Institute of Seismology and VolcanologyHokkaido UniversitySapporoJapan
  3. 3.JAMSTECYokosukaJapan
  4. 4.National Energy AuthorityReykjavikIceland
  5. 5.OHRC, Earthquake Research InstituteUniversity of TokyoBunkyo-kuJapan

Personalised recommendations