Skip to main content
Log in

Data-driven analysis of spinodoid topologies: anisotropy, inverse design, and elasticity tensor distribution

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Spinodoid topologies are bicontinuous porous microstructures inspired by the natural spinodal decomposition process. They offer a vast design space and are capable of representing anisotropic topologies, which makes them suitable for use in biomedical applications. This work focuses on some fundamental aspects in spinodoid microstructures. As the first, the extent of anisotropy is computed by a universal index and its correlation with spinodoid design parameters, including relative density and the three cone angles, is investigated. In order to do this, the k-means clustering method is utilized to group the topologies based on their level of anisotropy. Within each cluster, the relationship between the statistical features of the design parameters and the extent of anisotropy is analyzed in detail. As one of the findings, it is revealed that topologies created by larger cone angles will lie in low anisotropy category. Although the sensitivity analysis indicates that all the cone angles are equally important in determining the elasticity tensor elements, our findings demonstrate that there are some discrepancies in the probability density function of cone angles in topologies with high anisotropy. In addition, the results show that lower relative densities tend to lead to higher anisotropy in the structures regardless of cone angle values. In the second stage of this work, a data-driven framework for inverse design is proposed. This approach involves generating high-quality samples and utilizing an efficient data-driven framework capable of handling unequal queries. It can identify multiple spinodoid candidates for a desired elasticity tensor, rather than just one. This approach has great advantages, especially in manufacturing, where different topologies may have varying manufacturing costs. This provides designers with more choices to select from. In the final stage, we estimated the statistical distribution of the elasticity tensor components for the generated spinodoid topologies. By measuring the Mahalanobis distance between a query and the estimated distribution, one can determine whether the query belongs to the property space of spinodoid topologies or not. This approach allows for assessing the similarity or dissimilarity of a query to the distribution of the generated spinodoid topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Asuero, A.G., Sayago, A., González, A.: The correlation coefficient: an overview. Crit. Rev. Anal. Chem. 36(1), 41–59 (2006)

    Article  CAS  Google Scholar 

  • Bauer, J., Meza, L.R., Schaedler, T.A., Schwaiger, R., Zheng, X., Valdevit, L.: Nanolattices: an emerging class of mechanical metamaterials. Adv. Mater. 29(40), 1701850 (2017)

    Article  Google Scholar 

  • Berk, N.: Scattering properties of the leveled-wave model of random morphologies. Phys. Rev. A 44(8), 5069 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bock, H.-H.: Clustering methods: a history of k-means algorithms. In: Selected Contributions in Data Analysis and Classification, pp. 161–172 (2007)

  • Borji, A.: Pros and cons of GAN evaluation measures: new developments. Comput. vis. Image Underst. 215, 103329 (2022)

    Article  Google Scholar 

  • Cahn, J.W.: On spinodal decomposition. Acta Metall. 9(9), 795–801 (1961)

    Article  CAS  Google Scholar 

  • Choudhary, K., et al.: Recent advances and applications of deep learning methods in materials science. NPJ Computat. Mater. 8(1), 59 (2022)

    Article  ADS  Google Scholar 

  • Gameiro, M., Mischaikow, K., Wanner, T.: Evolution of pattern complexity in the Cahn–Hilliard theory of phase separation. Acta Mater. 53(3), 693–704 (2005)

    Article  ADS  CAS  Google Scholar 

  • Hsieh, M.-T., Endo, B., Zhang, Y., J. BAuer, and L. Valdevit,: The mechanical response of cellular materials with spinodal topologies. J. Mech. Phys. Solids 125, 401–419 (2019)

    Article  ADS  Google Scholar 

  • Hutchinson, J.W., Thompson, J.M.T.: Imperfections and energy barriers in shell buckling. Int. J. Solids Struct. 148, 157–168 (2018)

    Article  Google Scholar 

  • Iooss, B., Lemaître, P.: A review on global sensitivity analysis methods. In: Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications, pp. 101–122 (2015)

  • Kadic, M., Milton, G.W., van Hecke, M., Wegener, M.: 3D metamaterials. Nat. Rev. Phys. 1(3), 198–210 (2019)

    Article  Google Scholar 

  • Kumar, S., Tan, S., Zheng, L., Kochmann, D.M.: Inverse-designed spinodoid metamaterials. NPJ Comput. Mater. 6(1), 73 (2020)

    Article  ADS  Google Scholar 

  • Mangipudi, K.R., Epler, E., Volkert, C.A.: Topology-dependent scaling laws for the stiffness and strength of nanoporous gold. Acta Mater. 119, 115–122 (2016)

    Article  ADS  CAS  Google Scholar 

  • Mueller, T., Kusne, A.G., Ramprasad, R.: Machine learning in materials science: recent progress and emerging applications. Rev. Comput. Chem. 29, 186–273 (2016)

    CAS  Google Scholar 

  • Mullin, T., Deschanel, S., Bertoldi, K., Boyce, M.C.: Pattern transformation triggered by deformation. Phys. Rev. Lett. 99(8), 084301 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Nazir, A., et al.: Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3D Printing of materials and cellular metamaterials. Mater. Des. 111661 (2023)

  • Park, S.-W., Ko, J.-S., Huh, J.-H., Kim, J.-C.: Review on generative adversarial networks: focusing on computer vision and its applications. Electronics 10(10), 1216 (2021)

    Article  Google Scholar 

  • Ranganathan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101(5), 055504 (2008)

    Article  ADS  PubMed  Google Scholar 

  • Schot, M., Araújo-Gomes, N., van Loo, B., Kamperman, T., Leijten, J.: Scalable fabrication, compartmentalization and applications of living microtissues. Bioact. Mater. 19, 392–405 (2023)

    PubMed  Google Scholar 

  • Sinha, P., Mukhopadhyay, T.: Programmable multi-physical mechanics of mechanical metamaterials. Mater. Sci. Eng. R. Rep. 155, 100745 (2023)

    Article  Google Scholar 

  • Soyarslan, C., Bargmann, S., Pradas, M., Weissmüller, J.: 3D stochastic bicontinuous microstructures: generation, topology and elasticity. Acta Mater. 149, 326–340 (2018)

    Article  ADS  CAS  Google Scholar 

  • Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008)

    Article  Google Scholar 

  • Sun, X.-Y., Xu, G.-K., Li, X., Feng, X.-Q., Gao, H.: Mechanical properties and scaling laws of nanoporous gold. J. Appl. Phys. 113(2), 023505 (2013)

    Article  ADS  Google Scholar 

  • Sun, G., Chen, D., Zhu, G., Li, Q.: Lightweight hybrid materials and structures for energy absorption: a state-of-the-art review and outlook. Thin-Wall. Struct. 172, 108760 (2022)

    Article  Google Scholar 

  • Teubner, M.: Level surfaces of Gaussian random fields and microemulsions. Europhys. Lett. 14(5), 403 (1991)

    Article  ADS  CAS  Google Scholar 

  • Torabi, S., Lowengrub, J., Voigt, A., Wise, S.: A new phase-field model for strongly anisotropic systems. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 465(2105), 1337–1359 (2009)

    MathSciNet  Google Scholar 

  • Turhan, C.G., Bilge, H.S.: Recent trends in deep generative models: a review. In: 2018 3rd International Conference on Computer Science and Engineering (UBMK), pp. 574–579. IEEE (2018)

  • Vidyasagar, A., Krödel, S., Kochmann, D.M.: Microstructural patterns with tunable mechanical anisotropy obtained by simulating anisotropic spinodal decomposition. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 474(2218), 20180535 (2018)

    MathSciNet  Google Scholar 

  • Wei, J., et al.: Machine learning in materials science. InfoMat 1(3), 338–358 (2019)

    Article  CAS  Google Scholar 

  • Xia, L., Breitkopf, P.: Recent advances on topology optimization of multiscale nonlinear structures. Arch. Comput. Methods Eng. 24, 227–249 (2017)

    Article  MathSciNet  Google Scholar 

  • Yazdanparast, R., Rafiee, R.: Determining in-plane material properties of square core cellular materials using computational homogenization technique. Eng. Comput. 39(1), 373–386 (2023)

    Article  Google Scholar 

  • Zhang, N., et al.: Machine learning-based quantitative analysis of metal ductile fracture surface. Materialia 32, 101904 (2023)

    Article  ADS  Google Scholar 

  • Zheng, X., et al.: Ultralight, ultrastiff mechanical metamaterials. Science 344(6190), 1373–1377 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zheng, L., Kumar, S., Kochmann, D.M.: Data-driven topology optimization of spinodoid metamaterials with seamlessly tunable anisotropy. Comput. Methods Appl. Mech. Eng. 383, 113894 (2021)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

We clarify that, no funding was received for the research presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Golnary.

Ethics declarations

Conflict of interest

Farshid Golnary, and Mohsen Asghari declare that they do not have conflict of interests or financial conflicts to disclose.

Data availability

The datasets generated during the current study are available from the corresponding Author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golnary, F., Asghari, M. Data-driven analysis of spinodoid topologies: anisotropy, inverse design, and elasticity tensor distribution. Int J Mech Mater Des (2024). https://doi.org/10.1007/s10999-024-09711-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10999-024-09711-x

Keywords

Navigation