Skip to main content
Log in

Large deformation analysis of the magneto-responsive beam and its applications in flexible grippers and robots

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Due to their superior biocompatibility, flexibility and control strategy compared to the traditional robots, soft robots have been widely used in a wide spectrum of engineering areas, such as biomedical, exploration, aerospace, intelligent devices and other fields. However, the existing soft robot structures mainly focus on employing homogeneous materials, which greatly limits the design flexibilities of soft robots, and correspondingly, the existing theories are usually invalid for calculating heterogeneous large deformation beam models. Therefore, we developed a novel simulation method and an advanced theoretical calculation method for representing the large deformation of both the homogeneous and heterogeneous beams made of magneto-responsive materials prepared by mixing silicon rubber with NdFeB particles. We found the experimental and numerical results agree very well, showing that the heterogeneous beam can demonstrate a better driving performance than the homogeneous beam. Optimal parameters are afterwards obtained based on the developed simulation and theorical methods. Next, we generalize the optimized heterogeneous structure to engineer the flexible gripper and the soft robot. The grasping forces of the gripper are calculated based on the variational model of large deformation beams, which are consistent with the simulation and experimental values. Moreover, the motion mechanism of magnetic soft robot has been revealed through comprehensive force analysis and formulaic rigid body motion analysis. These findings have strengthened our understandings on the deformation of slender structures and the locomotion of magnetic soft robot, which are promising to guide the design and analysis of innovative devices and robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Reference:s

  • Bai, X.T., Zhang, Z.N., Shi, H.T., Luo, Z., et al.: Identification of subsurface mesoscale crack in full ceramic ball bearings based on strain energy theory. Appl. Sci. 13, 7783 (2023)

    Article  CAS  Google Scholar 

  • Chen, Z.P., Lu, W.B., Jiang, L.L., et al.: Solid-liquid state transformable magnetorheological millirobot. ACS Appl. Mater. Interfaces 14(26), 30007–30020 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Christianson, C., Goldberg, N.N., Tolley, M.T., et al.: Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot. 3(17), eaat1893 (2018)

    Article  PubMed  Google Scholar 

  • Erb, R.M., Martin, J.J., Barber, J.R., et al.: Actuating soft matter with magnetic torque. Adv. Funct. Mater. 26(22), 3859–3880 (2016)

    Article  CAS  Google Scholar 

  • Fei, Y.Q., Wang, J.B., Wu, P.: A novel fabric-based versatile and stiffness-tunable soft gripper integrating soft pneumatic fingers and wrist. Soft Robot. 6(1), 1–20 (2019)

    Article  PubMed  Google Scholar 

  • Gong, Y.L., Li, S.P., Liu, J.L.: Peeling of an extensible soft microbeam to solid: large deformation analysis. Int. J. Appl. Mech. 10(6), 1850065 (2018)

    Article  Google Scholar 

  • Hao, R.B., Lu, Z.Q., Ding, H., Chen, L.Q.: A nonlinear vibration isolator supported on a flexible plate: analysis and experiment. Nonlinear Dyn. 108, 941–958 (2022)

    Article  Google Scholar 

  • Hines, L., Petersen, K., Lum, G.Z., Sitti, M.: Soft actuators for small-scale robotics. Adv. Mater. 29(13), 1603483 (2017)

    Article  Google Scholar 

  • Hou, X.Y., Zhang, L., Su, Y.L., Gao, G.W., et al.: A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification. Nano Energy 105, 108013 (2023)

    Article  CAS  Google Scholar 

  • Hu, W., Lum, G., Sitti, M., et al.: Small-scale soft-bodied robot with multimodal locomotion. Nature 554(7690), 81–85 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Huang, H.W., Sakar, M.S., Nelson, B.J., et al.: Soft micromachines with programmable motility and morphology. Nat. Commun. 7, 12263 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, T., Jambon, P., Brun, P., et al.: Bubble casting soft robotics. Nature 599(7884), 229–244 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kim, Y., Zhao, X.H.: Magnetic soft materials and robots. Chen. Rev. 122(5), 5317–5364 (2022)

    Article  CAS  Google Scholar 

  • Kim, Y., Yuk, H., Zhao, X.H., et al.: Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558(7709), 274–279 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kim, Y., Parada, G.A., Liu, S., Zhao, X.H.: Ferromagnetic soft continuum robots. Sci. Robot. 4(33), eaax7329 (2019)

    Article  PubMed  Google Scholar 

  • Lee, H., Jang, Y., Kim, J., et al.: 3D-printed programmable tensegrity for soft robotics. Sci. Robot. 5(45), 1–11 (2020)

    Article  CAS  Google Scholar 

  • Li, G., Chen, X., Qu, S., et al.: Self-powered soft robot in the Mariana Trench. Nature 591(7848), 66–84 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Li, T., Shi, H.T., Bai, X.T., Zhang, K., Bin, G.F.: Early performance degradation of ceramic bearings by a twin-driven model. Mech. Syst. Signal Process. 204, 110826 (2023)

    Article  Google Scholar 

  • Lu, H., Zhang, M., Yang, Y., et al.: A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat. Commun. 9, 3944 (2018). https://doi.org/10.1038/s41467-018-06491-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, G.Y., Schiller, D., Kaltenbrunner, M., et al.: Ultrafast small-scale soft electromagnetic robots. Nat. Commun. 13(1), 4456 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao, Y.N., Wang, X.J., Wang, S.P., Li, R.F.: Adaptive switching control based on dynamic zero-moment point for versatile hip exoskeleton under hybrid locomotion. IEEE Trans. Ind. Electron. 70(11), 11443–11452 (2023)

    Article  Google Scholar 

  • Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Qu, J.T., Mao, B.J., Li, Z.K., Xu, Y.N., et al.: Recent progress in advanced tactile sensing technologies for soft grippers. Adv. Funct. Mater. 33, 2306249 (2023a)

    Article  CAS  Google Scholar 

  • Qu, J.T., Yuan, Q.J., Li, Z.K., Wang, Z.Q., et al.: All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping. Nano Energy 111, 108387 (2023b)

    Article  CAS  Google Scholar 

  • Ren, Z., Hu, W., Dong, X., Sitti, M.: Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 10, 2703 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Shi, Y.T., Hou, X.Y., Na, Z.L., Zhou, J., et al.: Bio-inspired attachment mechanism of dynastes hercules: vertical climbing for on-orbit assembly legged robots. J. Bionic Eng. (2023). https://doi.org/10.1007/s42235-023-00423-0

    Article  Google Scholar 

  • Sun, B., Jia, R., Tang, J., et al.: Magnetic arthropod millirobots fabricated by 3D-printed hydrogels. Adv. Intell. Syst. 4(1), 2100139 (2021)

    Article  Google Scholar 

  • Sun, Y.H., Peng, Z.N., Hu, J.P., Ghosh, B.K.: Event-triggered critic learning impedance control of lower limb exoskeleton robots in interactive environments. Neurocomputing 564, 126963 (2024)

    Article  Google Scholar 

  • Wang, C., Sim, K., Yu, C., et al.: Soft ultrathin electronics innervated adaptive fully soft robots. Adv. Mater. 30(13), 1706695 (2018)

    Article  Google Scholar 

  • Wang, Y.B., Du, X.Z., Yu, J.F., et al.: Amphibious miniature soft jumping robot with on-demand in-flight maneuver. Adv. Sci. 10(18), 1–10 (2023)

    Article  Google Scholar 

  • Xu, T., Zhang, J., Salehizadeh, M., Onaizah, O., Diller, E.: Millimeter-scale flexible robots with programmable three-dimen-sional magnetization and motions. Sci. Robot. 4(29), 4eaav494 (2019)

    Article  Google Scholar 

  • Xu, X.L., Sun, Y.J., Tian, X.C., Zhou, L.L., et al.: A novel orientation determination approach of mobile robot using inertial and magnetic sensors. IEEE Trans. Ind. Electron. 70(4), 4267–4277 (2023)

    Article  ADS  Google Scholar 

  • Yi, S.Z., Wang, L., Jiang, L.L., et al.: High-throughput fabrication of soft magneto-origami machines. Nat. Commun. 13(1), 4177 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yim, S., Sitti, M.: Shape-programmable soft capsule robots for semi-implantable drug delivery. IEEE Trans. Robot. 28(5), 1198–1202 (2012)

    Article  Google Scholar 

  • Yu, Z., Wang, Y., Sun, S., et al.: Fast-response bioinspired near-infrared light-driven soft robot based on two-stage deformation. ACS Appl. Mater. Inter. 14(14), 16649–16657 (2022)

    Article  CAS  Google Scholar 

  • Zhang, C., Zhou, L.L., Li, Y.B.: Pareto optimal reconfiguration planning and distributed parallel motion control of mobile modular robots. IEEE Trans. Ind. Electron. (2023). https://doi.org/10.1109/TIE.2023.3321997

    Article  Google Scholar 

  • Zhao P. R., Yan L., Gao X. S.: Magnetic liquid metal droplet robot with multifunction and high output force in milli-Newton. Soft Robot. 10(6), 1146–1158 (2023)

  • Zhou, C., Yang, Y., Zang, J., et al.: Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat. Commun. 12(1), 5072 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, Y., Zhong, M., Li, S.C., Zhou, C., et al.: Flexible wearable strain sensors based on laser-induced graphene for monitoring human physiological signals. Polymers 15, 3553 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (11972375, 12211530028), the Natural Science Foundation of Shandong Province (ZR202011050038), and Special Funds for the Basic Scientific Research Expenses of Central Government Universities (2472022X03006A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 4336 KB)

Supplementary file2 (MP4 856 KB)

Supplementary file3 (MP4 888 KB)

Supplementary file4 (MP4 2190 KB)

Supplementary file5 (MP4 2708 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Cao, G., Jin, Y. et al. Large deformation analysis of the magneto-responsive beam and its applications in flexible grippers and robots. Int J Mech Mater Des (2024). https://doi.org/10.1007/s10999-024-09708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10999-024-09708-6

Keywords

Navigation