Skip to main content
Log in

Vibration analysis of quasicrystal sector plates with porosity distribution in a thermal environment

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

An approach to estimating the dynamic characteristic of one-dimensional orthorhombic quasicrystal sector plates with various boundary conditions is presented. These investigated structures have an arbitrary angle span, and the constituent materials of these models possess a certain porosity distribution. The Green–Naghdi generalized thermoelastic equations have been applied to the sector plates in a thermal environment to obtain an explicit expression, from which the heat fluxes equation can be converted into a state equation. The state-space method is conducted in basic equations of phason and phonon fields to capture governing equations of the structures along the r-direction. Fourier series expansions are utilized to control the span of the sector plates, subject to simply supported boundary conditions along the circumferential direction. Meanwhile, the remaining boundary conditions are treated by differential quadrature technique. The global propagator matrix is proposed to overcome the numerical instabilities caused by high-order frequency and large discrete points. Numerical examples show that each order frequency follows an increasing pattern from small to large with the increase of fixed boundary conditions. The changes in angular span can cause variations in stiffness, leading to alterations in structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings can be accessed by directly contacting the corresponding author based on a reasonable request.

References

  • Bak, P.: Phenomenological theory of icosahedral incommensurate (quasiperiodic) order in Mn-Al alloys[J]. Phys. Rev. Lett. 54(14), 1517–1519 (1985)

    Article  Google Scholar 

  • Chen, J.Y., Guo, J.H., Pan, E.: Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect[J]. J. Sound Vib. 400, 550–563 (2017)

    Article  Google Scholar 

  • Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., et al.: A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA[J]. Compos. Struct. 259, 113216 (2021)

    Article  Google Scholar 

  • Fan, T.Y.: Mathematical theory of elasticity of quasicrystals and its applications[M]. Springer, Heidelberg (2011)

    Book  Google Scholar 

  • Farahinezhad, E., Nouri, A., Hosseinian, E.: Coupled thermoelastic analysis of semi-elliptical crack in thick-walled cylinder considering green-lindsay and Green-Naghdi type II theories[J]. J. Stress Anal. 2(1), 11–26 (2017)

    Google Scholar 

  • Feng, X., Zhang, L.L., Zhang, H., et al.: Semi-analytical solution for mixed supported and multilayered two-dimensional thermo-elastic quasicrystal plates with interfacial imperfections[J]. J. Therm. Stresses 12, 1–26 (2022a)

    Google Scholar 

  • Feng, X., Zhang, L.L., Zhu, Z.W., et al.: Forced vibration analysis of inhomogeneous quasicrystal coating in a thermal environment[J]. Front. Mater. 9, 963149 (2022b)

    Article  Google Scholar 

  • Ferreira, T., Koga, G.Y., De Oliveira, I.L., et al.: Functionally graded aluminum reinforced with quasicrystal approximant phases - Improving the wear resistance at high temperatures[J]. Wear 462, 203507 (2020a)

    Article  Google Scholar 

  • Ferreira, T., De Oliveira, I.L., Zepon, G., et al.: Rotational outward solidification casting: an innovative single step process to produce a functionally graded aluminum reinforced with quasicrystal approximant phases[J]. Mater. Des. 189, 108544 (2020b)

    Article  Google Scholar 

  • Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics[J]. Proc. R. Soc. London. Ser. A: Math. Phys. Sci. 432(1885), 171–194 (1991)

  • Guo, J.H., Liu, G.T.: Analytic solutions to problem of elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals[J]. Appl. Math. Mech-Engl 29(4), 485–493 (2008)

    Article  MathSciNet  Google Scholar 

  • Hu, C.Z., Wang, R.H., Ding, D.H.: Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals[J]. Rep. Prog. Phys. 63(1), 1–39 (2000)

    Article  MathSciNet  Google Scholar 

  • Huang, Y.Z., Chen, J., Zhao, M., et al.: Responses of multilayered two-dimensional decagonal quasicrystal circular nanoplates with initial stresses and nanoscale interactions[J]. European Journal of Mechanics-A/Solids 87, 104216 (2021)

    Article  MathSciNet  Google Scholar 

  • Hwu, C.: Anisotropic Elastic Plates[M]. Spring Science and Business Media (2010)

  • Leclaire, P., Horoshenkov, K.V., Swift, M.J., et al.: The vibrational response of a clamped rectangular porous plate[J]. J. Sound Vib. 247(1), 19–31 (2001)

    Article  Google Scholar 

  • Li, L.H., Liu, G.T.: Study on a straight dislocation in an icosahedral quasicrystal with piezoelectric effects[J]. Appl. Math. Mech-Engl. Ed. 39(9), 1259–1266 (2018)

    Article  MathSciNet  Google Scholar 

  • Li, L.H., Yun, G.H.: Elastic fields around a nanosized elliptic hole in decagonal quasicrystals[J]. Chin. Phys. B 23(10), 106104 (2014)

    Article  Google Scholar 

  • Li, X.Y., Wang, T., Zheng, R.F., et al.: Fundamental thermo-electro-elastic solutions for 1D hexagonal QC[J]. ZAMM – J. Appl. Math. Mech/zeitschrift Für Angewandte Mathematik Und Mechanik 95(5), 457–468 (2015)

    Article  MathSciNet  Google Scholar 

  • Li, Y., Yang, L.Z., Gao, Y.: Thermo-elastic analysis of functionally graded multilayered two-dimensional decagonal quasicrystal plates[J]. ZAMM-J. Appl. Math. Mech/zeitschrift Für Angewandte Mathematik Und Mechanik 98(9), 1585–1602 (2018)

    Article  MathSciNet  Google Scholar 

  • Li, R.T., Liu, Q., Tian, L.H., et al.: Discharge and densification in the spark plasma sintering of quasicrystal particles[J]. J. Mater. Sci. 54(11), 8727–8742 (2019)

    Article  Google Scholar 

  • Li, Y., Li, Y., Qin, Q.H., et al.: Axisymmetric bending analysis of functionally graded one-dimensional hexagonal piezoelectric quasi-crystal circular plate[J]. Proc. Royal Soc. a: Math. Phys. Eng. Sci. 476(2241), 20200301 (2020)

    Article  MathSciNet  Google Scholar 

  • Lü, C., Lee, Y., Lim, C., et al.: Free vibration of long-span continuous rectangular Kirchhoff plates with internal rigid line supports[J]. J. Sound Vib. 297(1–2), 351–364 (2006)

    Article  Google Scholar 

  • Lü, C.F., Chen, W.Q., Shao, J.W.: Semi-analytical three-dimensional elasticity solutions for generally laminated composite plates[J]. Eur. J. Mech. a. Solids 27(5), 899–917 (2008)

    Article  Google Scholar 

  • Lubensky, T.C., Ramaswamy, S., Toner, J.: Hydrodynamics of icosahedral quasicrystals[J]. Phys. Rev. B 32(11), 7444 (1985)

    Article  Google Scholar 

  • Polishchuk, S., Ustinov, A., Telychko, V., et al.: Fabrication of thick, crack-free quasicrystalline Al–Cu–Fe coatings by electron-beam deposition[J]. Surf. Coat. Technol. 291, 406–412 (2016)

    Article  Google Scholar 

  • Ramakrishnan, N., Arunachalam, V.S.: Effective elastic moduli of porous solids[J]. J. Mater. Sci. 25(9), 3930–3937 (1990)

    Article  Google Scholar 

  • Rezaei, A.S., Saidi, A.R., Abrishamdari, M., et al.: Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach[J]. Thin-Walled Struct. 120, 366–377 (2017)

    Article  Google Scholar 

  • Socolar, J.E., Lubensky, T., Steinhardt, P.J.: Phonons, phasons, and dislocations in quasicrystals[J]. Phys. Rev. B 34(5), 3345 (1986)

    Article  Google Scholar 

  • Sun, T.Y., Guo, J.H., Pan, E.: Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium[J]. Appl. Math. Mech. 42(8), 1077–1094 (2021)

    Article  MathSciNet  Google Scholar 

  • Vattré, A., Pan, E., Chiaruttini, V.: Free vibration of fully coupled thermoelastic multilayered composites with imperfect interfaces[J]. Compos. Struct. 259, 113203 (2021)

    Article  Google Scholar 

  • Waksmanski, N., Pan, E., Yang, L.Z., et al.: Free vibration of a multilayered one-dimensional quasi-crystal plate[J]. J. Vib. Acoust-Trans. ASME 136(4), (2014)

  • Wang, Y.Q., Wan, Y.H., Zhang, Y.F.: Vibrations of longitudinally traveling functionally graded material plates with porosities[J]. Eur. J. Mech-A/Solids 66, 55–68 (2017)

    Article  MathSciNet  Google Scholar 

  • Xue, Y.Q., Jin, G.Y., Ma, X.L., et al.: Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach[J]. Int. J. Mech. Sci. 152, 346–362 (2019)

    Article  Google Scholar 

  • Ye, J.Q.: Laminated Composite Plates and Shells: 3D Modelling[M]. Springer Science and Business Media (2002)

  • Zenkour, A.M.: A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities[J]. Compos. Struct. 201, 38–48 (2018)

    Article  Google Scholar 

  • Zenkour, A.M.: Quasi-3D refined theory for functionally graded porous plates: displacements and stresses[J]. Phys. Mesomech. 23(1), 39–53 (2020)

    Article  Google Scholar 

  • Zhang, L.Y., Zhang, H.L., Li, Y., et al.: Static electro-mechanical response of axisymmetric one-dimensional piezoelectric quasicrystal circular actuator[J]. Materials 15(9), 3157 (2022)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 11972365, 12102458, 12102481, and 12272402] and the China Agricultural University Education Foundation [grant numbers 1101–240001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Gao.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Some parameters are written as

$$\begin{gathered} a_{1} = C_{44}^{{}} , \, a_{2} = R_{6} , \, a_{3} = R_{5} , \, a_{4} = C_{33}^{{}} K_{3} - R_{3}^{2} , \, a_{5} = - C_{13}^{{}} K_{3}^{{}} + R_{1} R_{3} , \, a_{6} = - C_{13}^{{}} K_{3}^{{}} + R_{2} R_{3} , \hfill \\ a_{7} = \beta_{1} , \, a_{8} = K_{3} , \, a_{9} = R_{3} , \, a_{10} = - C_{33}^{{}} R_{1} + C_{13}^{{}} R_{3} , \, a_{11} = - C_{33}^{{}} R_{2}^{{}} + C_{13}^{{}} R_{3} , \, a_{12} = \beta_{3} , \, a_{13} = C_{33} , \hfill \\ a_{14} = k_{33}^{{}} , \, a_{15} = \rho , \, a_{16} = C_{13}^{2} K_{3} + C_{33}^{{}} R_{1} R_{2} - C_{13}^{{}} R_{1} R_{3} - C_{13}^{{}} R_{2} R_{3} ,\,a_{17} = C_{12}^{{}} ,\,a_{18} = C_{66}^{{}} , \hfill \\ a_{19} = C_{13}^{2} K_{3} + C_{33}^{{}} R_{2}^{2} - 2C_{13}^{{}} R_{2} R_{3} ,\,a_{20} = C_{11}^{{}} ,\,a_{21} = C_{13}^{{}} ,\,a_{22} = R_{1} , \hfill \\ a_{23} = C_{33}^{{}} R_{1}^{2} - C_{33}^{{}} R_{1} R_{2} - C_{13}^{{}} R_{1} R_{3} + C_{13}^{{}} R_{2} R_{3} ,\,a_{24} = C_{33}^{{}} R_{1} R_{2} - C_{33}^{{}} R_{2}^{2} - C_{13}^{{}} R_{1} R_{3} + C_{13}^{{}} R_{2} R_{3} , \hfill \\ a_{25} = R_{1} R_{3} - R_{2} R_{3} ,\,a_{26} = R_{2} ,\,a_{27} = K_{1}^{{}} ,\,a_{28} = T_{0} ,\,a_{29} = k_{11}^{{}} ,\,a_{30} = k_{22}^{{}} ,\,a_{31} = C_{e} ,\,a_{32} = K_{2} . \hfill \\ \end{gathered}$$
(A1)

The state equation for the QC annular sector plate with CS boundary conditions are

$$\begin{aligned} \frac{{{\text{d}}\tilde{u}_{{ri}} }}{{{\text{d}}z}} = & - \sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 1 \right)}} \tilde{u}_{{zk}} } - \frac{{a_{2} }}{{a_{1} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 1 \right)}} \tilde{w}_{{zk}} } - \frac{1}{{a_{1} }}\tilde{\sigma }_{{zri}} {\text{ }}\left( {2 \le i \le N} \right), \\ \frac{{{\text{d}}\tilde{u}_{{\theta i}} }}{{{\text{d}}z}} = & \frac{1}{{r_{i} }}p\tilde{u}_{{zi}} + \frac{{a_{3} }}{{a_{1} }}\frac{1}{{r_{i} }}p\tilde{w}_{{zi}} - \frac{1}{{a_{1} }}\tilde{\sigma }_{{z\theta i}} {\text{ }}\left( {2 \le i \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{u}_{{zi}} }}{{{\text{d}}z}} = & \frac{{a_{5} }}{{a_{4} }}\sum\limits_{{k = 2}}^{N} {X_{{ik}}^{{\left( 1 \right)}} \tilde{u}_{{rk}} } + \frac{{a_{6} }}{{a_{4} }}\frac{1}{{r_{i} }}\tilde{u}_{{ri}} - \frac{{a_{6} }}{{a_{4} }}\frac{1}{{r_{i} }}p\tilde{u}_{{\theta i}} + \frac{{a_{8} a_{{12}} }}{{a_{4} }}\tilde{T}_{i} + \frac{{a_{8} }}{{a_{4} }}\tilde{\sigma }_{{zzi}} - \frac{{a_{9} }}{{a_{4} }}\tilde{H}_{{zzi}} {\text{ }}\left( {2 \le i \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{w}_{{zi}} }}{{{\text{d}}z}} = & \frac{{a_{{10}} }}{{a_{4} }}\sum\limits_{{k = 2}}^{N} {X_{{ik}}^{{\left( 1 \right)}} \tilde{u}_{{rk}} } + \frac{{a_{{11}} }}{{a_{4} }}\frac{1}{{r_{i} }}\tilde{u}_{{ri}} - \frac{{a_{{11}} }}{{a_{4} }}\frac{1}{{r_{i} }}p\tilde{u}_{{\theta i}} - \frac{{a_{9} a_{{12}} }}{{a_{4} }}\tilde{T}_{i} - \frac{{a_{9} }}{{a_{4} }}\tilde{\sigma }_{{zzi}} + \frac{{a_{{13}} }}{{a_{4} }}\tilde{H}_{{zzi}} {\text{ }}\left( {2 \le i \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{T}_{i} }}{{{\text{d}}z}} = & - \frac{1}{{a_{{14}} }}\tilde{q}_{{zi}} {\text{ }}\left( {2 \le i \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{{zzi}} }}{{{\text{d}}z}} = & - a_{{15}} \omega ^{2} \tilde{u}_{{zi}} + a_{1} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{1ik}}^{{}} \tilde{u}_{{zk}} } + a_{2} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{1ik}}^{{}} \tilde{w}_{{zk}} } - \sum\limits_{{k = 2}}^{N} {X_{{ik}}^{{\left( 1 \right)}} \tilde{\sigma }_{{zrk}} } - \frac{1}{{r_{i} }}\tilde{\sigma }_{{zri}} - \frac{1}{{r_{i} }}p\tilde{\sigma }_{{z\theta i}} {\text{ }}\left( {2 \le i \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{{z\theta i}} }}{{{\text{d}}z}} = & \left( { - \frac{{a_{{16}} }}{{a_{4} }} + a_{{17}} } \right)\frac{1}{{r_{i} }}p\sum\limits_{{k = 2}}^{N} {X_{{ik}}^{{\left( 1 \right)}} \tilde{u}_{{rk}} } + a_{{18}} p\sum\limits_{{k = 2}}^{N} {X_{{ik}}^{{\left( 1 \right)}} \frac{1}{{r_{k} }}\tilde{u}_{{rk}} } - \left( {\frac{{a_{{19}} }}{{a_{4} }} - a_{{20}} - 2a_{{18}} } \right)p\frac{1}{{r_{i}^{2} }}\tilde{u}_{{ri}} \\ & - a_{{18}} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 2 \right)}} \tilde{u}_{{\theta k}} } - 2a_{{18}} \frac{1}{{r_{i} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 1 \right)}} \tilde{u}_{{\theta k}} } + a_{{18}} p\sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 1 \right)}} \frac{1}{{r_{k} }}\tilde{u}_{{\theta k}} } + 2a_{{18}} \frac{1}{{r_{i}^{2} }}\tilde{u}_{{\theta i}} - \left( {\frac{{a_{{19}} }}{{a_{4} }} - a_{{20}} } \right)p^{2} \frac{1}{{r_{i}^{2} }}\tilde{u}_{{\theta i}} \\ & - a_{{15}} \omega ^{2} \tilde{u}_{{\theta i}} - \left( {\frac{{a_{6} a_{{12}} }}{{a_{4} }} + a_{7} } \right)p\frac{1}{{r_{i} }}\tilde{T}_{i} - \frac{{a_{6} }}{{a_{4} }}p\frac{1}{{r_{i} }}\tilde{\sigma }_{{zzi}} - \frac{{a_{{11}} }}{{a_{4} }}p\frac{1}{{r_{i} }}\tilde{H}_{{zzi}} {\text{ }}\left( {2 \le i \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{{zri}} }}{{{\text{d}}z}} = & \left( {\frac{{a_{{19}} }}{{a_{4} }} - a_{{20}} } \right)\sum\limits_{{k = 2}}^{N} {\left( {X_{{ik}}^{{\left( 2 \right)}} - f_{{Nik}} } \right)\tilde{u}_{{rk}} } - \frac{{a_{5} a_{{21}} + a_{{10}} a_{{22}} }}{{a_{4} }}\sum\limits_{{k = 2}}^{N} {f_{{1ik}}^{{}} \tilde{u}_{{rk}} } - \left( {a_{{20}} - a_{{17}} - \frac{{a_{{23}} }}{{a_{4} }}} \right)\frac{1}{{r_{i} }}\sum\limits_{{k = 2}}^{N} {X_{{ik}}^{{\left( 1 \right)}} \tilde{u}_{{rk}} } \\ & + \left( {\frac{{a_{{16}} }}{{a_{4} }} - a_{{17}} } \right)\left( {\sum\limits_{{k = 2}}^{N} {X_{{ik}}^{{\left( 1 \right)}} \frac{1}{{r_{k} }}\tilde{u}_{{rk}} - E\tilde{u}_{{ri}} } } \right) + a_{{18}} p^{2} \frac{1}{{r_{i}^{2} }}\tilde{u}_{{ri}} + \left( {a_{{20}} - a_{{17}} + \frac{{a_{{24}} }}{{a_{4} }}} \right)\frac{1}{{r_{i}^{2} }}\tilde{u}_{{ri}} \\ & - a_{{15}} \omega ^{2} \tilde{u}_{{ri}} + \left( {\frac{{a_{{16}} }}{{a_{4} }} - a_{{17}} } \right)p\sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 1 \right)}} \frac{1}{{r_{k} }}\tilde{u}_{{\theta k}} } - a_{{18}} p\frac{1}{{r_{i} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 1 \right)}} \tilde{u}_{{\theta k}} } + \left( {3a_{{18}} + \frac{{a_{{24}} }}{{a_{4} }}} \right)p\frac{1}{{r_{i}^{2} }}\tilde{u}_{{\theta i}} \\ & + \left( {a_{7} + \frac{{a_{6} a_{{12}} }}{{a_{4} }}} \right)\sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 1 \right)}} \tilde{T}_{k} } + \frac{{a_{{12}} a_{{25}} }}{{a_{4} }}\frac{1}{{r_{i} }}\tilde{T}_{i} + \frac{{a_{6} }}{{a_{4} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 1 \right)}} \tilde{\sigma }_{{zzk}} } + \frac{{a_{{25}} }}{{a_{4} }}\frac{1}{{r_{i} }}\tilde{\sigma }_{{zzi}} \\ & + \frac{{a_{{10}} }}{{a_{4} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 1 \right)}} \tilde{H}_{{zzk}} } - \frac{{a_{{13}} a_{{26}} - a_{{13}} a_{{22}} }}{{a_{4} }}\frac{1}{{r_{i} }}\tilde{H}_{{zzi}} {\text{ }}\left( {2 \le i \le N} \right), \\ \frac{{{\text{d}}\tilde{H}_{{zzi}} }}{{{\text{d}}z}} = & a_{2} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{1ik}}^{{}} \tilde{u}_{{zk}} } + \frac{{a_{2}^{2} }}{{a_{1} }}\sum\limits_{{k = 2}}^{{N - 1}} {f_{{1ik}}^{{}} \tilde{w}_{{zk}} } + \left( {\frac{{a_{2}^{2} }}{{a_{1} }} - a_{{27}} } \right)\sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 2 \right)}} \tilde{w}_{{zk}} } + \left( {\frac{{a_{2}^{2} }}{{a_{1} }} - a_{{27}} } \right)\frac{1}{{r_{i} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 1 \right)}} \tilde{w}_{{zk}} } \\ & - \left( {\frac{{a_{3}^{2} }}{{a_{1} }} - a_{{28}} } \right)p^{2} \frac{1}{{r_{i}^{2} }}\tilde{w}_{{zi}} - a_{{15}} \omega ^{2} \tilde{w}_{{zi}} - \frac{{a_{3} }}{{a_{1} }}p\frac{1}{{r_{i} }}\tilde{\sigma }_{{z\theta i}} - \frac{{a_{2} }}{{a_{1} }}\sum\limits_{{k = 2}}^{N} {X_{{ik}}^{{\left( 1 \right)}} \tilde{\sigma }_{{zrk}} } + \frac{{a_{2} }}{{a_{1} }}\frac{1}{{r_{i} }}\tilde{\sigma }_{{zri}} {\text{ }}\left( {2 \le i \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{q}_{{zi}} }}{{{\text{d}}z}} = & \left( { - \frac{{a_{6} a_{{12}} a_{{28}} }}{{a_{4} }} - a_{7} a_{{28}} } \right)\omega ^{2} \sum\limits_{{k = 2}}^{N} {X_{{ik}}^{{\left( 1 \right)}} \tilde{u}_{{rk}} } - \left( {\frac{{a_{6} a_{{12}} a_{{28}} }}{{a_{4} }} + a_{7} a_{{28}} } \right)\frac{1}{{r_{i} }}\tilde{u}_{{ri}} - \left( {\frac{{a_{6} a_{{12}} a_{{28}} }}{{a_{4} }} + a_{7} a_{{28}} } \right)\frac{1}{{r_{i} }}\tilde{u}_{{\theta i}} \\ & - a_{{29}} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 2 \right)}} \tilde{T}_{k} } + a_{{29}} \frac{1}{{r_{i} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{ik}}^{{\left( 1 \right)}} \tilde{T}_{k} } - a_{{30}} p^{2} \frac{1}{{r_{i}^{2} }}\tilde{T}_{i} - \frac{{a_{8} a_{{12}}^{2} a_{{28}} }}{{a_{4} }}\omega ^{2} \tilde{T}_{i} - a_{{15}} a_{{31}} \omega ^{2} \tilde{T}_{i} \\ & - \frac{{a_{8} a_{{12}} a_{{28}} }}{{a_{4} }}\omega ^{2} \tilde{\sigma }_{{zzi}} + \frac{{a_{9} a_{{12}} a_{{28}} }}{{a_{4} }}\omega ^{2} \tilde{H}_{{zzi}} {\text{ }}\left( {2 \le i \le N - 1} \right), \\ \end{aligned}$$
(A2)

with \(f_{1ik} = g_{i1}^{\left( 1 \right)} g_{1k}^{\left( 1 \right)} ,f_{Nik} = g_{iN}^{\left( 1 \right)} g_{Nk}^{\left( 1 \right)} ,E_{1} = \left[ {\begin{array}{*{20}c} {{\mathbf{0}}_{{\left( {N - 1} \right)\left( {N - 2} \right)}} } & {g_{iN}^{\left( 1 \right)} } \\ \end{array} } \right].\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Zhang, L., Li, Y. et al. Vibration analysis of quasicrystal sector plates with porosity distribution in a thermal environment. Int J Mech Mater Des (2024). https://doi.org/10.1007/s10999-023-09693-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10999-023-09693-2

Keywords

Navigation