Skip to main content
Log in

Iterative design window search for polymer micromachined flapping-wing nano air vehicles using nonlinear dynamic analysis

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this study, an iterative design window (DW) search using nonlinear dynamic simulation was proposed for polymer micromachined flapping-wing nano air vehicles (FWNAVs) that can satisfy both nonlinear and unsteady design requirements, which are contradictory to each other. The DW is defined as an existing area of satisfactory solutions in the design parameter space. The present FWNAVs have a complete 2.5-dimensional structure such that they can be fabricated using polymer micromachining. The micro-wing of our FWNAVs has been designed using morphological and kinematic parameters of an actual dipteran insect. Finally, using our method, we found the DW that allowed miniaturization of the design down to 10 mm while satisfying all the design requirements. Our findings demonstrate the possibility of further miniaturizing FWNAVs down to the size of small flying insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article.

References

  • Amendola, G., et al.: Preliminary design process for an adaptive winglet. Int. J. Mech. Eng. Robot. Res. 7, 83–92 (2018)

    Google Scholar 

  • Bathe, K.J.: Finite Element Procedures. Prentice-Hall (1996)

    MATH  Google Scholar 

  • Bontemps, A., et al.: “Modeling and evaluation of power transmission of flapping wing nano air vehicle”. Proceedings of the IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, pp. 1−6. September 2014

  • Cao, C., Burgess, S., Conn, T.: Toward a dielectric elastomer resonator driven flapping-wing micro air vehicle. Front. Robot. AI 5, 137–147 (2019)

    Article  Google Scholar 

  • Ellington, C.P.: The aerodynamics of hovering insect flight. III. kinematics. Philos. Transact. r. Soc. Lond. 305, 41–78 (1984)

    Google Scholar 

  • Ennos, A.R.: The Kinematics and aerodynamics of the free flight of some diptera. J. Exp. Biol. 142, 49–85 (1989)

    Article  Google Scholar 

  • Galinski, C.: Influence of MAV characteristics on their applications. Aviation 9, 16–23 (2005)

    Article  Google Scholar 

  • Gong, D.H., Lee, D.W., Shin, S.J.: “Design and experiment of string-based flapping mechanism and modulized trailing edge control system for insect-like FWMAV”. Proceedings of American Institute of Aeronautics and Astronautics SciTech forum, pp. 13. January 2018

  • https://www.electronics.toray/

  • https://www.toray.jp/plastics/en/amilan/technical/tec006.html

  • Hu, J.H., Sun, M.: Unsteady aerodynamic forces of a flapping wing. J. Exp. Biol. 207, 1137–1150 (2004)

    Article  Google Scholar 

  • Ishihara, D.: Role of Fluid-Structure interaction in generating the characteristic tip path of a flapping flexible wing. Phys. Rev. E 98, 032411 (2018)

    Article  Google Scholar 

  • Ishihara, D.: Computational approach for the fluid-structure interaction design of insect-inspired micro flapping wings. Fluids 7(1), 26 (2022)

    Article  Google Scholar 

  • Ishihara, D., Horie, T.: Fluid structural interaction modeling of insect flight. Transact. Jpn. Soc. Mech. Eng. 72(718), 1410–1417 (2006)

    Article  Google Scholar 

  • Ishihara, D., Horie, T.: Passive mechanism of pitch recoil in flapping insect wings. Bioinspir. Biomim. 12, 016008–016022 (2016)

    Article  Google Scholar 

  • Ishihara, D., Jeong, M.J., Yoshimura, S., Yagawa, G.: Design window search using continuous evolutionary algorithm and clustering –its application to shape optimization of microelectrostatic actuator. Comput. Struct. 80, 2469–2481 (2002)

    Article  Google Scholar 

  • Ishihara, D., Horie, T., Denda, M.: A Two-dimensional computational study on the fluid-structure interaction cause of wing pitch changes in dipteran flapping flight. J. Exp. Biol. 212, 1–10 (2009)

    Article  Google Scholar 

  • Ishihara, D., Horie, T., Niho, T.: An Experimental and three-dimensional computational study on the aerodynamic contribution to the passive pitching motion of flapping wings in hovering flies. Bioinspir. Biomim. 9, 046009–046022 (2014)

    Article  Google Scholar 

  • Ishihara, D., Yokota, J., Onishi, M., Niho, T., Horie, T.: A shape simplification modeling of the cambering in insect’s flapping wings using beam and shell. Transact. Jpn. Soc. Comput. Eng. Sci 2018, 20180018 (2018)

    Google Scholar 

  • Ishihara, D., Ohira, N., Takagi, M., Murakami, S., Horie, T.: “Fluid-structure interaction design of insect-like micro flapping wing”, Proceedings of VII International Conference on Computational Methods for coupled problems in science and Engineering, pp. 870–875. June 2017

  • Ishihara, D., Murakami, S., Ohira, N., Ueo, J., Takagi, M.: “Polymer micromachined transmission for insect-inspired flapping-wing nano air vehicle”, Proceedings of the 15th Annual IEEE International Conference on Nano/Micro Engineered and Molecular System, pp. 176–179. September 2020

  • Jafferies, N.T., Helbing, E.F., Karpelson, M., Wood, R.J.: Untethered flight of an insect-inspired sized flapping-wing microscale aerial vehicle. Nature 570, 491–495 (2019)

    Article  Google Scholar 

  • Jo, D., Kwon, Y.: Vertical takeoff and landing wing developed for long distance flight and stable transit flight. Int. J. Mech. Eng. Robot. Res. 8, 797–802 (2019)

    Article  Google Scholar 

  • Lau, G.K., Lim, H.T., Teo, J.Y., Chin, Y.W.: Lightweight mechanical amplifiers for rolled dielectric elastomer actuators and their integration with bio-inspired wing flappers. Smart Mater. Struct. 23, 025021–025033 (2014)

    Article  Google Scholar 

  • Liu, Y., Sun, M.: Wing kinematics measurement and aerodynamics of hovering droneflies. J. Exp. Biol. 211, 2014–2025 (2008)

    Article  Google Scholar 

  • Liu, Z., Yan, X., Qi, M., Zhang, X., Lin, L.: Low-voltage electromagnetic actuators for flapping-wing micro aerial vehicles. Sens. Actuators A Phys. 265, 1–9 (2017)

    Article  Google Scholar 

  • Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired, insect-scale robot. Science 340, 603–607 (2013)

    Article  Google Scholar 

  • Meng, K., et al.: The design and micromachining of an electromagnetic MEMS flapping-wing micro air vehicle. Microsyst. Technol. 18, 127–136 (2012)

    Article  Google Scholar 

  • Murakami, S., Ishihara, D., Araki, M., Horie, T., Ohira, N., Ito, T.: Microfabrication of hybrid structure composed of rigid silicon and flexible polyimide membranes. Micro Nano Lett. 12, 913–915 (2017)

    Article  Google Scholar 

  • Oonishi, M., Ishihara, D.: Performance evaluation of the pixel wing model for the insect wing’s camber. J. Adv. Simul. Sci. Eng. 8(2), 163–172 (2021)

    Google Scholar 

  • Petricca, L., Ohlckers, P., Grinde, C.: Micro-and nano-air vehicles: state of the art. Int. J. Aerosp. Eng. 2011, 214549–214565 (2011)

    Google Scholar 

  • Pilkey, W.D.: Peterson’s Stress Concentration Factors. Wiley (1997)

    Book  Google Scholar 

  • Ramegowada, P.C., Ishihara, D., Niho, T., Horie, T.: Performance evaluation of numerical finite element coupled algorithms for structure- electric interaction analysis of MEMS piezoelectric actuator. Int. J. Comput. Methods 16, 1850106–1850133 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Rashmikant., Ishihara, D., Suetsugu, R., Ramegowada, P.C.: “One-wing polymer micromachined transmission for insect-inspired flapping-wing nano air vehicle”. Engineering Research Express, vol. 3, pp. 045006–25. October 2021

  • Rashmikant., Ishihara, D., Suetsugu, R., Murakami, S., Ramegowada, P.C.: “Improved design of polymer micromachined transmission for flapping-wing nano air vehicle”, Proceedings of the 16th Annual IEEE International Conference on Nano/Micro Engineered and Molecular System, April 2021

  • Roll, J.A., Cheng, B., Deng, X.: “Design, fabrication, and experiments of an electromagnetic actuator for flapping wing micro air vehicles”. Proceedings of the IEEE International Conference on Robotics and Automation, pp. 809–815. October 2013

  • Steltz, E., Avadhanula, S., Fearing, R.S.: “High lift force with 275 Hz wing beat in MFI”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 3993–3998. October 2007

  • Ucgun, H., Yuzgec, U., Bayilmis, C.: A review on applications of rotary-wing unmanned aerial vehicle charging stations. Int. J. Adv. Robot. Syst. 18, 1–20 (2021)

    Article  Google Scholar 

  • Usman, M., Maqsood, A., Mulkana, S.R., Riaz, R.: Gap effect on flight performance and longitudinal stability of biplane micro air vehicles. Int. J. Mech. Eng. Robot. Res. 7, 635–642 (2018)

    Article  Google Scholar 

  • Wang, Q.M., Cross, L.E.: Performance analysis of piezoelectric cantilever bending actuator. Ferroelectrics 215, 187–213 (1998)

    Article  Google Scholar 

  • Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Rob. 24, 341–347 (2008)

    Article  Google Scholar 

  • Xiao, S., Hu, K., Huang, B., Deng, H., Ding, X.: A review of research on the mechanical design of hoverable flapping wing micro-air vehicles. J. Bionic. Eng. 18, 1235–1254 (2021)

    Article  Google Scholar 

  • Yan, X., Qi, M., Lin, L.: “Self-lifting artificial insect wings via electrostatic flapping actuators”. Proceedings of the 28th IEEE international conference on micro electro mechanical systems, pp. 22–25. January 2015

  • Zou, Y., Zhang, W.P., Zhang, Z.: Liftoff of an electromagnetically driven insect-inspired flapping-wing robot. IEEE Trans. Robot. 32, 1285–1289 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science, KAKENHI Grant Number 20H04199. We appreciate the support from Toray Industries, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Ishihara.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and financial interest is already acknowledged. We certify that the submission is original work and is not under review at any other publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashmikant, Ishihara, D. Iterative design window search for polymer micromachined flapping-wing nano air vehicles using nonlinear dynamic analysis. Int J Mech Mater Des 19, 407–429 (2023). https://doi.org/10.1007/s10999-022-09635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-022-09635-4

Keywords

Navigation