Skip to main content

Advertisement

Log in

Multi-objective optimization of arc star honeycomb and bidirectional reentrant honeycomb using NSGA-II

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this paper, the multi-objective optimization design of arc star honeycomb (ASH) and bi-directional reentrant honeycomb (BRH) is carried out by Python script to improve Young's modulus based on the lightweight of the honeycomb. A large number of models of different structural parameters are established by the Python script and analyzed by the finite element method, and then the response surface model (RSM) is established according to the results of finite element analysis. On this basis, the non-dominated sorting genetic algorithm (NSGA-II) and RSM are combined to perform multi-objective optimization of the 2D and 3D configurations of the two types of honeycomb, and the optimal set of parameters is selected by comparing the individual fitness values. The results show that after multi-objective optimization, Young's modulus of the ASH and BRH is enhanced in both 2D and 3D configurations with the smallest possible mass. In addition, the ASH has performance advantages over the BRH in 2D configuration, and BRH is better in 3D configuration. It can also be observed that the ASH and BRH have Poisson ratio adjustable properties. The results also show that this multi-objective optimization method can effectively save the analysis and calculation time. The lightweight, high-strength metamaterial is expected to be used in key fields such as aerospace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  • Alderson, A., Alderson, K.L., Attard, D., Evans, K.E., Gatt, R., Grima, J.N., et al.: Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos. Sci. Technol. 70(7), 1042–1048 (2010)

    Article  Google Scholar 

  • Chang, Y., Wang, H., Dong, Q.: Machine learning-based inverse design of auxetic metamaterial with zero Poisson’s ratio. Mater. Today Commun. 30, 103186 (2022)

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  • Deng, H., Cheng, L., Liang, X., Hayduke, D., To, A.C.: Topology optimization for energy dissipation design of lattice structures through snap-through behavior. Comput. Methods Appl. Mech. Eng. 358, 112641 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, C.Z., Gao, Y., Huang, J.P.: Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92(25), 251907 (2008)

    Article  Google Scholar 

  • Grima, J.N., Gatt, R.: Perforated sheets exhibiting negative Poisson’s ratios. Adv. Eng. Mater. 12(6), 460–464 (2010)

    Article  Google Scholar 

  • Grima, J.N., Gatt, R., Alderson, A., Evans, K.E.: On the potential of connected stars as auxetic systems. Mol. Simul. 31(13), 925–935 (2005)

    Article  Google Scholar 

  • Grima, J.N., Farrugia, P.-S., Gatt, R., Attard, D.: On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Physica Status Solidi (b) 245(3), 521–529 (2008)

    Article  Google Scholar 

  • Khorasaninejad, M., Chen, W.T., Devlin, R.C., Oh, J., Zhu, A.Y., Capasso, F.: Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352(6290), 1190–1194 (2016)

    Article  Google Scholar 

  • Körner, C., Liebold-Ribeiro, Y.: A systematic approach to identify cellular auxetic materials. Smart Mater. Struct. 24(2), 025013 (2014)

    Article  Google Scholar 

  • Lakes, R.: Foam structures with a negative Poisson’s ratio. Science 235(4792), 1038–1040 (1987)

    Article  Google Scholar 

  • Lakes, R.: Deformation mechanisms in negative Poisson’s ratio materials: structural aspects. J. Mater. Sci. 26(9), 2287–2292 (1991)

    Article  Google Scholar 

  • Lakes, R.S.: Negative-Poisson’s-ratio materials: auxetic solids. Annu. Rev. Mater. Res. 47(1), 63–81 (2017)

    Article  Google Scholar 

  • Larsen, U.D., Signund, O., Bouwsta, S.: Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J. Microelectromech. Syst. 6(2), 99–106 (1997)

    Article  Google Scholar 

  • Li, J.Y., Gao, Y., Huang, J.P.: A bifunctional cloak using transformation media. J. Appl. Phys. 108(7), 074504 (2010)

    Article  Google Scholar 

  • Li, D., Yin, J., Dong, L., Lakes, R.S.: Numerical analysis on mechanical behaviors of hierarchical cellular structures with negative Poisson’s ratio. Smart Mater. Struct. 26(2), 025014 (2016)

    Article  Google Scholar 

  • Li, C., Shen, H.-S., Wang, H.: Nonlinear dynamic response of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Eur. Phys. J. Plus 134(2), 79 (2019)

    Article  Google Scholar 

  • Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., et al.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000)

    Article  Google Scholar 

  • Liu, R., Ji, C., Mock, J.J., Chin, J.Y., Cui, T.J., Smith, D.R.: Broadband ground-plane cloak. Science 323(5912), 366–369 (2009)

    Article  Google Scholar 

  • Malkiel, I., Mrejen, M., Nagler, A., Arieli, U., Wolf, L., Suchowski, H.: Plasmonic nanostructure design and characterization via Deep Learning. Light Sci. Appl. 7(1), 60 (2018)

    Article  Google Scholar 

  • Meza, L.R., Zelhofer, A.J., Clarke, N., Mateos, A.J., Kochmann, D.M., Greer, J.R.: Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. 112(37), 11502–11507 (2015)

    Article  Google Scholar 

  • Mizzi, L., Azzopardi, K.M., Attard, D., Grima, J.N., Gatt, R.: Auxetic metamaterials exhibiting giant negative Poisson’s ratios. Physica Status Solidi RRL Rapid Res. Lett. 9(7), 425–430 (2015)

    Article  Google Scholar 

  • Narayana, S., Sato, Y.: Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108(21), 214303 (2012)

    Article  Google Scholar 

  • Peng, Y., Wei, K., Mei, M., Yang, X., Fang, D.: Simultaneously program thermal expansion and Poisson’s ratio in three dimensional mechanical metamaterial. Compos. Struct. 262, 113365 (2021)

    Article  Google Scholar 

  • Qin, H., Yang, D., Ren, C.: Modelling theory of functional element design for metamaterials with arbitrary negative Poisson’s ratio. Comput. Mater. Sci. 150, 121–133 (2018)

    Article  Google Scholar 

  • Rafsanjani, A., Pasini, D.: Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mech. Lett. 9, 291–296 (2016)

    Article  Google Scholar 

  • Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S.: Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett. 78(4), 489–491 (2001)

    Article  Google Scholar 

  • Sun, D., Zhang, W., Zhao, Y., Li, G., Xing, Y., Gong, G.: In-plane crushing and energy absorption performance of multi-layer regularly arranged circular honeycombs. Compos. Struct. 96, 726–735 (2013)

    Article  Google Scholar 

  • Surjadi, J.U., Gao, L., Du, H., Li, X., Xiong, X., Fang, N.X., et al.: Mechanical metamaterials and their engineering applications. Adv. Eng. Mater. 21(3), 1800864 (2019)

    Article  Google Scholar 

  • Tao, Y., Chen, M., Chen, H., Pei, Y., Fang, D.: Strain rate effect on the out-of-plane dynamic compressive behavior of metallic honeycombs: experiment and theory. Compos. Struct. 132, 644–651 (2015)

    Article  Google Scholar 

  • Wang, L., Liu, H.-T.: 3D compression–torsion cubic mechanical metamaterial with double inclined rods. Extreme Mech. Lett. 37, 100706 (2020)

    Article  Google Scholar 

  • Wang, L., Liu, H.-T.: Parameter optimization of bidirectional re-entrant auxetic honeycomb metamaterial based on genetic algorithm. Compos. Struct. 267, 113915 (2021)

    Article  Google Scholar 

  • Wang, C., Zou, S., Zhao, W.: Multi-objective optimization of a novel crash box with a three-dimensional negative Poisson’s ratio inner core. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 233(2), 263–275 (2019)

    Article  Google Scholar 

  • Wang, W., Dai, S., Zhao, W., Wang, C., Ma, T., Chen, Q.: Reliability-based optimization of a novel negative Poisson’s ratio door anti-collision beam under side impact. Thin Walled Struct 154, 106863 (2020)

    Article  Google Scholar 

  • Warmuth, F., Osmanlic, F., Adler, L., Lodes, M.A., Körner, C.: Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting. Smart Mater. Struct. 26(2), 025013 (2016)

    Article  Google Scholar 

  • Wu, J., Ma, F., Zhang, S., Shen, L.: Application of acoustic metamaterials in low-frequency vibration and noise reduction. J. Mech. Eng 52(13), 68–78 (2016)

    Article  Google Scholar 

  • Xu, S., Beynon, J.H., Ruan, D., Lu, G.: Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos. Struct. 94(8), 2326–2336 (2012)

    Article  Google Scholar 

  • Yablonovitch, E., Gmitter, T.J., Leung, K.M.: Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67(17), 2295–2298 (1991)

    Article  Google Scholar 

  • Yu, X., Zhou, J., Liang, H., Jiang, Z., Wu, L.: Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog. Mater Sci. 94, 114–173 (2018)

    Article  Google Scholar 

  • Zhang, Z.-Y., Li, J., Liu, H.-T., Wang, Y.-B.: Novel 2D arc-star-shaped structure with tunable Poisson’s ratio and its 3D configurations. Mater. Today Commun. 30, 103016 (2022)

    Article  Google Scholar 

  • Zheng, X., Smith, W., Jackson, J., Moran, B., Cui, H., Chen, D., et al.: Multiscale metallic metamaterials. Nat. Mater. 15(10), 1100–1106 (2016)

    Article  Google Scholar 

  • Zigoneanu, L., Popa, B.-I., Cummer, S.A.: Three-dimensional broadband omnidirectional acoustic ground cloak. Nat. Mater. 13(4), 352–355 (2014)

    Article  Google Scholar 

Download references

Funding

The funding was provided by the Special Project for the Central Government to Guide Local Scientific and Technological Development of Hebei Province (Grand No. 226Z2201G) and National Natural Science Foundation of China (Grand No. 11702079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Tao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, CY., Liu, HT. Multi-objective optimization of arc star honeycomb and bidirectional reentrant honeycomb using NSGA-II. Int J Mech Mater Des 19, 375–389 (2023). https://doi.org/10.1007/s10999-022-09628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-022-09628-3

Keywords

Navigation