Skip to main content
Log in

Multi-objective periodic topology optimization of thermo-mechanical coupling structure with anisotropic materials by using the element-free Galerkin method

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A multi-objective periodic topological optimization model of thermo-mechanical coupling structure with anisotropic materials is established by integrating the element-free Galerkin (EFG) method with the weighting method. The periodic constraint is implemented by reallocating equally the relative density and sensitivity of the objective function for EFG node with the same identifier in the different periodic design subdomain. The correctness of the proposed model is verified by comparing optimal anisotropic thermo-mechanical periodic structures based on EFG method with those obtained by FEM, and the results indicate that the optimal multi-objective periodic structures based on EFG method have clearer and smooth profiles no requiring the filtration technology. The influences of the number of design subdomains, weight coefficients, thermal conductivity factors, Poisson's ratio factors and off-angles on optimal EFG multi-objective periodic structure and its performance are explored through an engineering example, and the reasonable range values of the above parameters are recommended. The feasibility of these suggestions is further verified through the performance analysis, and it is indicated that the anisotropic materials with the specific parameters could better improve the performance of optimal EFG multi-objective periodic structure than isotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alacoque, L., Watkins, R.T., Tamijani, A.Y.: Stress-based and robust topology optimization for thermoelastic multi-material periodic microstructures. Comput. Methods. Appl. Mech. Engrg. 379, 11374 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods. Eng. 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsoe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization[J]. Arch. Appl. Mech. 69, 635–654 (1999)

    Article  MATH  Google Scholar 

  • Chen, Y.H., Zhou, S.W., Li, Q.: Multiobjective topology optimization for finite periodic structures. Comput. Struct. 88, 806–811 (2010)

    Article  Google Scholar 

  • Deng, J.D., Yan, J., Cheng, G.D.: Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct. Multidiscip. Optim. 47, 583–597 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Du, Y.X., Luo, Z., Tian, Q.H., Chen, L.P.: Topology optimization for thermo-mechanical compliant actuators using mesh-free methods. Engrg. Optim. 41, 753–772 (2009)

    Article  MathSciNet  Google Scholar 

  • Dunning, P.D., Stanford, B.K., Kim, H.A.: Coupled aerostructural topology optimization using a level set method for 3D aircraft wings. Struct. Multidiscip. Optim. 51, 1113–1132 (2014)

    Article  MathSciNet  Google Scholar 

  • Fu, J.J., Xia, L., Gao, L., Xiao, M., Li, H.: Topology optimization of periodic structures with substructuring. J. Mech. Des. (2019). https://doi.org/10.1115/1.4042616

    Article  Google Scholar 

  • Ghasemi, H., Kerfriden, P., Bordas, S.P.A., Muthu, J., Zi, G., Rabczuk, T.: Probabilistic multiconstraints optimization of cooling channels in ceramic matrix composites. Compos. B Eng. 81, 107–119 (2015)

    Article  Google Scholar 

  • Ghasemi, H., Park, H.S., Rabczuk, T.: A level-set based IGA formulation for topology optimization of flexoelectric materials. Comput. Methods. Appl. Mech. Engrg. 313, 239–258 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghasemi, H., Park, H.S., Rabczuk, T.: A multi-material level set-based topology optimization of flexoelectric composites. Comput. Methods. Appl. Mech. Engrg. 332, 47–62 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Habibian, A., Sohouli, A., Kefal, A., Nadler, B., Yildiz, M., Suleman, A.: Multi-material topology optimization of structures with discontinuities using Peridynamics. Compos. Struct. 258, 113345 (2021)

    Article  Google Scholar 

  • Hamdia, K.M., Ghasemi, H., Zhuang, X., Rabczuk, T.: Multilevel Monte Carlo method for topology optimization of flexoelectric composites with uncertain material properties. Eng. Anal. Bound. Elem. 134, 412–418 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • He, G.Q., Huang, X.D., Wang, H., Li, G.Y.: Topology optimization of periodic structures using BESO based on unstructured design points. Struct. Multidiscip. Optim. 53, 271–275 (2015)

    Article  MathSciNet  Google Scholar 

  • Huang, X., Xie, Y.M.: Optimal design of periodic structures using evolutionary topology optimization. Struct. Multidiscip. Optim. 36, 597–606 (2007)

    Article  Google Scholar 

  • Ivarsson, N., Wallin, M., Tortorelli, D.A.: Topology optimization for designing periodic microstructures based on finite strain viscoplasticity. Struct. Multidiscip. Optim. 61, 2501–2521 (2020)

    Article  MathSciNet  Google Scholar 

  • Jantos, D.R., Hackl, K., Junker, P.: Topology optimization with anisotropic materials, including a filter to smooth fiber pathways. Struct. Multidiscip. Optim. 61, 2135–2154 (2020)

    Article  MathSciNet  Google Scholar 

  • Jiao, H.Y., Li, Y., Yang, L.Y.: Periodic Layout Optimization of Cyclic Symmetric Structure. IEEE. Access. 7, 55269–55276 (2019)

    Article  Google Scholar 

  • Khan, W., Sirajul, I., Ullah, B.: Structural optimization based on meshless element free Galerkin and level set methods. Comput. Methods. Appl. Mech. Engrg. 344, 144–163 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Kook, J., Jensen, J.S.: Topology optimization of periodic microstructures for enhanced loss factor using acoustic–structure interaction. Int. J. Solids. Struct. 122–123, 59–68 (2017)

    Article  Google Scholar 

  • Lavaei, A., Firoozjaee, A.R.: Topology optimization of continuum structures using element free Galerkin method on irregular nodal distribution. Int. J. Mech. Mater. Des. 17, 333–344 (2021)

    Article  Google Scholar 

  • Li, X., Dong, H.: The element-free Galerkin method for the nonlinear p-Laplacian equation. Comput. Math. Appl. 75, 2549–2560 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, J., Guan, Y.J., Wang, G., Wang, G.C., Zhang, H.M., Lin, J.: A meshless method for topology optimization of structures under multiple load cases. Structures 25, 173–179 (2020)

    Article  Google Scholar 

  • Lim, J., You, C., Dayyani, I.: Multi-objective topology optimization and structural analysis of periodic spaceframe structures. Mater. Des. 190, 108552 (2020)

    Article  Google Scholar 

  • Lin, Q.Y., Wang, J.H., Hong, J., Liu, Z., Wang, Z.H.: A biomimetic generative optimization design for conductive heat transfer based on element-free Galerkin method. Int. Commun. Heat. Mass. Transf. 100, 67–72 (2019)

    Article  Google Scholar 

  • Liu, Q.H., Liu, X.W., Zhang, C.Z., Xin, F.X.: A novel multiscale porous composite structure for sound absorption enhancement. Compos. Struct. 276, 114456 (2021)

    Article  Google Scholar 

  • Luo, Z., Zhang, N., Wang, Y., Gao, W.: Topology optimization of structures using meshless density variable approximants. Int. J. Numer. Methods. Eng. 93, 443–464 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Mirzendehdel, A.M., Rankouhi, B., Suresh, K.: Strength-based topology optimization for anisotropic parts. Addit. Manuf. 19, 104–113 (2018)

    Google Scholar 

  • Page, L.G., Dirker, J., Meyer, J.P.: Topology optimization for the conduction cooling of a heat-generating volume with orthotropic material. Int. J. Heat. Mass. Transfer. 103, 1075–1083 (2016)

    Article  Google Scholar 

  • Sidhardh, S., Ray, M.C.: Element-free Galerkin model of nano-beams considering strain gradient elasticity. Acta. Mech. 229, 2765–2786 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Multidiscip. Optim. 16, 68–75 (1998)

    Article  Google Scholar 

  • Tian, B.Y., Wang, J., Dai, G.L., Ouyang, X.P., Huang, J.P.: Thermal metadevices with geometrically anisotropic heterogeneous composites. Int. J. Heat. Mass. Transfer. 174, 121312 (2021)

    Article  Google Scholar 

  • Tsavdaridis, K.D., Kingman, J.J., Toropov, V.V.: Application of structural topology optimisation to perforated steel beams. Comput. Struct. 158, 108–123 (2015)

    Article  Google Scholar 

  • Vogiatzis, P., Chen, S.K., Wang, X., Li, T.T., Wang, L.F.: Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method. Comput-Aided. Des. 83, 15–32 (2017)

    Article  MathSciNet  Google Scholar 

  • Wu, Q., Peng, M.J., Fu, Y.D., Cheng, Y.M.: The dimension splitting interpolating element-free Galerkin method for solving three-dimensional transient heat conduction problems. Eng. Anal. Bound. Elem. 128, 326–341 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Xia, L., Breitkopf, P.: Design of materials using topology optimization and energy-based homogenization approach in Matlab. Struct. Multidiscip. Optim. 52, 1229–1241 (2015)

    Article  MathSciNet  Google Scholar 

  • Xu, M.M., Xia, L., Wang, S.T., Liu, L.H., Xie, X.D.: An isogeometric approach to topology optimization of spatially graded hierarchical structures. Composite Structures 225, 111171 (2019)

    Article  Google Scholar 

  • Yang, X.W., Kim, Y.Y.: Topology optimization for the design of perfect mode-converting anisotropic elastic metamaterials. Compos. Struct. 201, 161–177 (2018)

    Article  Google Scholar 

  • Zhang, J.P., Zhou, G.Q., Gong, S.G., Wang, S.S.: Transient heat transfer analysis of anisotropic material by using element-free Galerkin method. Int. Commun. Heat. Mass. Transf. 84, 134–143 (2017a)

    Article  Google Scholar 

  • Zhang, J.P., Zhou, G.Q., Gong, S.G., Wang, S.S., Hu, S.: Steady heat transfer analysis of orthotropic structure based on Element-Free Galerkin method. Int. J. Therm. Sci. 121, 163–181 (2017b)

    Article  Google Scholar 

  • Zhang, J.P., Wang, S.S., Gong, S.G., Zuo, Q.S., Hu, H.Y.: Thermo-mechanical coupling analysis of the orthotropic structures by using element-free Galerkin method. Eng. Anal. Bound. Elem. 101, 198–213 (2019a)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, J.P., Wang, S.S., Zhou, G.Q., Gong, S.G., Yin, S.H.: Topology optimization of thermal structure for isotropic and anisotropic materials using the element-free Galerkin method. Engrg. Optim. 52, 1097–1118 (2019b)

    Article  MathSciNet  Google Scholar 

  • Zhang, J.P., Liu, T.X., Wang, S.S., Gong, S.G., Peng, J.P., Zuo, Q.S.: Thermomechanical coupling multi-objective topology optimization of anisotropic structures based on the element-free Galerkin method. Engrg. Optim. 54, 428 (2021)

    Article  MathSciNet  Google Scholar 

  • Zhao, Q.H., Fan, C.M., Wang, F.J., Qu, W.Z.: Topology optimization of steady-state heat conduction structures using meshless generalized finite difference method. Eng. Anal. Bound. Elem. 119, 13–24 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng, J., Yang, X., Long, S.: Topology optimization with geometrically non-linear based on the element free Galerkin method. Int. J. Mech. Mater. Des. 11, 231–241 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by National Natural Science Foundation of China (No. 51975503), Natural Science Foundation of Hunan Province (No. 2020JJ4582, 2020JJ6032), Scientific Research Fund of Hunan Provincial Education Department (No. 21B0164), and Hunan Province Ordinary University Young Backbone Teacher Training Fund (XJT [2020] No. 43), and all the supports are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Zhang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Peng, J., Liu, T. et al. Multi-objective periodic topology optimization of thermo-mechanical coupling structure with anisotropic materials by using the element-free Galerkin method. Int J Mech Mater Des 18, 939–960 (2022). https://doi.org/10.1007/s10999-022-09600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-022-09600-1

Keywords

Navigation