Skip to main content

Advertisement

Log in

Rotational energy harvesting from a novel arc-cylinder type vibro-impact dielectric elastomer generator

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A novel arc-cylinder type dielectric elastomer generator (AVI-DEG) is proposed in this paper to scavenge energy from rotational environment. The proposed AVI-DEG consists of a hollow arc cylinder, an inner rigid ball, two pairs of identical cylindrical frames and two pre-stretched dielectric elastomer membranes (DEMs). When the system is subjected to rotations, the rotational energy can be harvested through the impacts between the ball and the membranes. To simplify the complex rotations resulting from torsional vibrations and pendulum, etc., a harmonic rotational excitation is considered to act on the proposed AVI DEG. The dynamical behaviors of the proposed AVI-DEG are first analyzed theoretically, based on which the system’s energy harvesting (EH) process is further derived. The experiments measuring the output voltages of a DEM under the impacts of a ball using a single-sided impact (SSI) model, which has been conducted previously, are introduced to verify the EH process of the AVI-DEG at each impact. Furthermore, the numerical simulations are conducted to present the dynamical and electrical responses of the system under different rotational excitations, and the parametric influences of the rotational excitation (frequency and amplitude) and system’s dimensions on the system’s EH performance are discussed in detail. Research results show that appropriately setting these parameters can significantly improve the system’s EH performance. This work is also beneficial to investigating the EH performance of the system with given dimensions, or optimizing the system’s dimensions under a given rotational excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

\(d_{0}\) :

Inner diameter of the hollow arc cylinder

\(f_{0} \) :

Frequency of the angular velocity

\(g \) :

Gravitational acceleration

\( h_{0} \) :

Initial thickness of the pre-stretched DEM

\( h_{1} \) :

Smallest thickness of the pre-stretched DEM reaching its largest deformation

\( h_{c} \) :

Thickness of the hollow arc cylinder

\( i \) :

\(i{{\rm th}} \) impact

\(\Delta k_{i} \) :

Kinetic energy loss of the ball at the \(i{{\rm th}} \) impact

\(m \) :

Mass of the ball

\(r \) :

Restitution coefficient of the pre-stretched membrane

\(r_{b} \) :

Radius of the ball

\(t_{1}, \) \( t_{2} \) :

Start time and end time of the AVI-DEG operation

\(v_{{m - }}, \) \(v_{{m + }} \) :

Tangential velocities of the ball just before and after each impact

\( v_{M} \) :

Tangential velocity of the cylinder

\( v_{{M - }},\) \(v_{{M + }} \) :

Tangential velocities of the cylinder just before and after each impact

\(\Delta v \) :

Relative velocity between the ball and the pre-stretched DEM before each impact

\( v_{{m - }}^{i} \) :

Tangential velocity of the ball before the \( i{{\rm th}}\) impact

\( v_{{M - }}^{i} \) :

Tangential velocity of the cylinder before the \( i{{\rm th}}\) impact

\(A \) :

Amplitude of the angular velocity

\(A_{0} \) :

Initial surface area of the pre-stretched DEM

\(A_{1} \) :

Largest surface area of the pre-stretched DEM reaching its largest deformation

\(A_{{End}}, \) \(B_{{End}} \) :

\( A_{{End}}\) pre-stretched DEM and \( B_{{End}}\) pre-stretched DEM

\(C_{{\max }}, \) \( C_{{\min }} \) :

Maximum and minimum capacitances of the pre-stretched DEMs at each impact

\(N_{T} \) :

Total number of impacts during the time interval of the AVI-DEG operation

\(R_{0} \) :

Effective radius of the pre-stretched DEM

\(R_{1}, \) \(R_{2} \) :

Inner curved radius and outer curved radius of the hollow arc cylinder

T:

Environment temperature

\(Vol \) :

Volume of the pre-stretched DEM

\( W \) :

Electric energy gain

\(W_{i} \) :

Electric energy gain at the \(i{{\rm th}} \) impact

\( W_{{total}} \) :

Total electric energy gain

\( \delta _{{\max }} \) :

Largest central deflection of the pre-stretched DEM

\(\varepsilon _{0} \) :

Vacuum permittivity

\( \varepsilon \) :

Relative permittivity of the DE materials

\(\eta \) :

Energy conversion efficiency of the AVI-DEG

\(\theta _{b}, \) \(\theta _{c} \) :

Angular displacements of the ball and the hollow arc cylinder

\(\theta _{c} (0) \) :

Initial angular displacement of the hollow arc cylinder

\( \theta _{s} \) :

Angle between the \(A_{{End}} \)pre-stretched DEM and the \(B_{{End}} \) pre-stretched DEM

\(\Delta \theta \) :

Relative angular displacement between the ball and the hollow arc cylinder

\(\Delta \theta _{{\max }} \) :

Maximum angle that the ball can move inside the hollow arc cylinder

\( \theta ^{\prime}_{b},\) \( \theta ^{\prime\prime}_{b} \) :

Angular velocity and acceleration of the ball

\(\lambda _{{pre}} \) :

Pre-stretched ratio of the pre-stretched DEM

\(\phi _{{in}}, \) \( \phi _{{out}}\) :

Input voltage and output voltage of the AVI-DEG

\(\omega _{b}, \) \( \omega _{c} \) :

Angular velocities of the ball and the hollow arc cylinder

\(\Delta \omega \) :

Relative angular velocity between the ball and the hollow arc cylinder (before each impact)

\( \omega _{{b - }}, \) \(\omega _{{b + }} \) :

Angular velocities of the ball just before and after each impact

\(\omega _{{b - }}^{i} \) :

Angular velocity of the ball before the \(i{{\rm th}} \) impact

\( \omega _{c}^{i} \) :

Angular velocity of the hollow arc cylinder at the \(i{{\rm th}} \) impact

References

  • Afsharfard, A.: Application of nonlinear magnetic vibroimpact vibration suppressor and energy harvester. Mech. Syst. Signal Process. 98, 371–381 (2018)

    Article  Google Scholar 

  • Chiba, S., Waki, M., Wada, T., Hirakawa, Y., Masuda, K., Ikoma, T.: Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artifificial muscle generators. Appl. Energy 104, 497–502 (2013)

    Article  Google Scholar 

  • Daqaq, M.F., Crespo, R.S., Ha, S.: On the efficacy of charging a battery using a chaotic energy harvester. Nonlinear Dyn. 99, 1525–1537 (2020)

    Article  Google Scholar 

  • Dudkowski, D., Czołczynski, K., Kapitaniak, T.: Multistable synchronous states of two pendulum clocks suspended on a swinging support. Mech. Syst. Signal Process. 154, 107549 (2021)

    Article  Google Scholar 

  • Fan, P., Zhu, L., Chen, H., Luo, B.: Energy harvesting from a DE-based soft pendulum. Smart Mater. Struct. 27, 107224 (2018)

    Google Scholar 

  • Fan, K.Q., Zhang, Y.W., Liu, H.Y., Cai, M.L., Tan, Q.X.: A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions. Renewable Energy 138, 292–302 (2019)

    Article  Google Scholar 

  • Foo, C.C., Koh, S.J.A., Keplinger, C., Kaltseis, R., Bauer, S., Suo, Z.: Performance of dissipative dielectric elastomer generators. J. Appl. Phys. 111, 094107 (2012)

    Article  Google Scholar 

  • Ghasemi, H., Park, H.S., Rabczuk, T.: A level-set based IGA formulation for topology optimization of flexoelectric materials. Comput. Methods Appl. Mech. Eng. 313, 239–258 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghasemi, H., Park, H.S., Rabczuk, T.: A multi-material level set-based topology optimization of flexoelectric composites. Comput. Methods Appl. Mech. Eng. 332, 47–62 (2018a)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghasemi, H., Park, H.S., Alajlan, N., Rabczuk, T.: A computational framework for design and optimization of flexoelectric materials. Int. J. Comput. Methods 15(3), 1850097 (2018b)

    MathSciNet  MATH  Google Scholar 

  • Ghasemi, H., Park, H.S., Zhuang, X., Rabczuk, T.: Three-dimensional isogeometric analysis of flexoelectricity with MATLAB implementation. Comput. Mater. Continua 65(2), 1157–1179 (2020)

    Article  Google Scholar 

  • Huang, J., Shian, S., Suo, Z., Clarke, D.R.: Maximizing the energy density of dielectric elastomer generators using equi-biaxial loading. Adv. Func. Mater. 23, 5056–5061 (2013)

    Article  Google Scholar 

  • Jaafar, H.I., Mohamed, Z., Shamsudin, M.A., Mohd Subha, N.A., Ramli, L., Abdullahi, A.M.: Model reference command shaping for vibration control of multimode flexible systems with application to a double-pendulum overhead crane. Mech. Syst. Signal Process. 115, 677–695 (2019)

    Article  Google Scholar 

  • Jean-Mistral, C., Cong, T.V., Sylvestre, A.: Advances for dielectric elastomer generators: replacement of high voltage supply by electret. Appl. Phys. Lett. 101(16), 162901 (2012)

    Article  Google Scholar 

  • Kecik, K., Mitura, A.: Energy recovery from a pendulum tuned mass damper with two independent harvesting sources. Int. J. Mech. Sci. 174, 105568 (2020)

    Article  Google Scholar 

  • Koh, S.J.A., Zhao, X., Suo, Z.: Maximal energy that can be converted by a dielectric elastomer generator. Appl. Phys. Lett. 94, 262902 (2009)

    Article  Google Scholar 

  • Lai, Z., Thomson, G., Yurchenko, D., Val, D.V., Rodgers, E.: On energy harvesting from a vibro-impact oscillator with dielectric membranes. Mech. Syst. Signal Process. 107, 105–121 (2018)

    Article  Google Scholar 

  • Lai, Z.H., Wang, J.L., Zhang, C.L., Zhang, G.Q., Yurchenko, D.: Harvest wind energy from a vibro-impact DEG embedded into a bluff body. Energy Convers. Manage. 199, 111993 (2019)

    Article  Google Scholar 

  • Lai, Z.H., Wang, S.B., Zhu, L.K., Zhang, G.Q., Wang, J.L., Yang, K., Yurchenko, D.: A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting. Mech. Syst. Signal Process. 150, 107212 (2021)

    Article  Google Scholar 

  • Lin, L., Wang, S., Xie, Y., Jing, Q., Niu, S., Hu, Y., Wang, Z.L.: Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13(6), 2916–2923 (2013)

    Article  Google Scholar 

  • Liu, W., Yuan, Z., Zhang, S., Zhu, Q.: Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling. Appl. Energy 251, 113412 (2019)

    Article  Google Scholar 

  • Mckay, T.G., O’Brien, B.M., Calius, E.P., Anderson, I.A.: Soft generators using dielectric elastomers. Appl. Phys. Lett. 98, 142903 (2011)

    Article  Google Scholar 

  • Mckay, T.G., Rosset, S., Anderson, I.A., Shea, H.: Dielectric elastomer generators that stack up. Smart Mater. Struct. 24(1), 015014 (2015)

    Article  Google Scholar 

  • Mei, X.T., Zhou, S.X., Yang, Z.C., Kaizuka, T., Nakano, K.: Enhancing energy harvesting in low-frequency rotational motion by a quad-stable energy harvester with time-varying potential wells. Mech. Syst. Signal Process. 148, 107167 (2021)

    Article  Google Scholar 

  • Moretti, G., Rosati Papini, G.P., Righi, M., Forehand, D., Ingram, D., Vertechy, R., Fontana, M.: Resonant wave energy harvester based on dielectric elastomer generator. Smart Mater. Struct. 27, 035015 (2018)

    Article  Google Scholar 

  • Moretti, G., Rosati Papini Gastone, P., Daniele, L., Forehand, D., Ingram, D., Vertechy, R., Fontana, M.: Modelling and testing of a wave energy converter based on dielectric elastomer generators. Proc. R. Soc. A 475, 20180566 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Panigrahi, R., Mishra, S.K.: An electrical model of a dielectric elastomer generator. IEEE Trans. Power Electron. 33(4), 2792–2797 (2018)

    Article  Google Scholar 

  • Pelrine, R., Kornbluh, R.D., Eckerle, J., Jeuck, P., Oh, S., Pei, Q., Stanford, S.: Dielectric elastomers: generator mode fundamentals and applications. Proc. SPIE. 4329, 148–156 (2001)

    Article  Google Scholar 

  • Rao, X.X., Zhang, C.L., Zhu, L.K., Zhang, G.Q., Zhang, J.W., Lai, Z.H.: Investigation on the impact-based energy conversion of a dielectric elastomer membrane. IEEE Access. 8, 180261–180272 (2020)

    Article  Google Scholar 

  • Rostami, A.B., Armandei, M.: Renewable energy harvesting by vortex-induced motions: review and benchmarking of technologies. Renew. Sustain. Energy Rev. 70, 193–214 (2017)

    Article  Google Scholar 

  • Shian, S., Bertoldi, K., Clarke, D.R.: Dielectric elastomer based ‘“Grippers”’ for soft robotics. Adv. Mater. 27, 6814–6819 (2016)

    Article  Google Scholar 

  • Siddique, A.R.M., Mahmud, S., Heyst, B.V.: A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers. Manage. 106, 728–747 (2015)

    Article  Google Scholar 

  • Silva, R.S., Ritto, T.G., Savi, M.A.: Shape memory alloy couplers applied for torsional vibration attenuation of drill-string systems. J. Petrol. Sci. Eng. 202, 108546 (2021)

    Article  Google Scholar 

  • Su, M., Xu, W., Zhang, Y.: Theoretical analysis of piezoelectric energy harvesting system with impact under random excitation. Int. J. Non-Linear Mech. 119, 103322 (2020)

    Article  Google Scholar 

  • Thomson, G., Lai, Z., Val, D.V., Yurchenko, D.: Advantages of nonlinear energy harvesting with dielectric elastomers. J. Sound Vib. 442, 167–182 (2019)

    Article  Google Scholar 

  • Wang, Z.L., Chen, J., Long, L.: Progress in triboelectric nanogenerators as new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015)

    Article  Google Scholar 

  • Wang, P., Pan, L., Wang, J., Xu, M., Dai, G., Zou, H., Dong, K., Wang, Z.L.: An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano 12, 9433–9440 (2018)

    Article  Google Scholar 

  • Wang, J., Tang, L., Zhao, L., Zhang, Z.: Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies. Energy 172, 1066–1078 (2019a)

    Article  Google Scholar 

  • Wang, J., Zhou, S., Zhang, Z., Yurchenko, D.: High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers. Manage. 181, 645–652 (2019b)

    Article  Google Scholar 

  • Wang, J., Tang, S., Krstic, M.: Adaptive output-feedback control of torsional vibration in off-shore rotary oil drilling systems. Automatica 111, 108640 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, B., Yu, N., Zhang, L., Ma, H., Wu, C., Wang, K., Zhou, S.: Scavenging vibrational energy with a novel bistable electromagnetic energy harvester. Smart Mater. Struct. 29, 025022 (2020)

    Article  Google Scholar 

  • Yang, S., Zhao, X., Sharma, P.: Avoiding the pull-in instability of a dielectric elastomer film and the potential for increased actuation and energy harvesting. Soft Matter 13(26), 4552–4558 (2017)

    Article  Google Scholar 

  • Yurchenko, D., Val, D.V., Lai, Z., Gu, G., Thomson, G.: Energy harvesting from a DE-based dynamic vibro-impact system. Smart Mater. Struct. 26, 105001 (2017a)

    Article  Google Scholar 

  • Yurchenko, D., Lai, Z.H., Thomson, G., Val, D.V., Bobryk, R.V.: Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer. Appl. Energy 208, 456–470 (2017b)

    Article  Google Scholar 

  • Zhang, H.L., Yang, Y., Zhong, X.D., Su, Y.J., Zhou, Y.S., Hu, C.G., Wang, Z.L.: Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS Nano 8, 680–690 (2014)

    Article  Google Scholar 

  • Zhang, C.L., Lai, Z.H., Rao, X.X., Zhang, J.W., Yurchenko, D.: Energy harvesting from a novel contact-type dielectric elastomer generator. Energy Convers. Manage. 205, 112351 (2020a)

    Article  Google Scholar 

  • Zhang, J.W., Lai, Z.H., Rao, X.X., Zhang, C.L.: Harvest rotational energy from a novel dielectric elastomer generator with crank-connecting rod mechanisms. Smart Mater. Struct. 29, 065005 (2020b)

    Article  Google Scholar 

  • Zhang, C.L., Lai, Z.H., Zhang, G.Q., Yurchenko, D.: Energy harvesting from a dynamic vibro-impact dielectric elastomer generator subjected to rotational excitations. Nonlinear Dyn. 102, 1271–1284 (2020c)

    Article  Google Scholar 

  • Zhou, J., Jiang, L., Khayat, R.E.: Methods to improve harvested energy and conversion efficiency of viscoelastic dielectric elastomer generators. J. Appl. Phys. 121, 184102 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This work is about the mechanical engineering. This research does not involve any human participants or animals.

Informed consent

Only the authors listed in the manuscript are involved into this work. The submission of this research is agreed by all the authors listed in the manuscript and is permitted by both the affiliations of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.W. Rotational energy harvesting from a novel arc-cylinder type vibro-impact dielectric elastomer generator. Int J Mech Mater Des 18, 587–609 (2022). https://doi.org/10.1007/s10999-022-09594-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-022-09594-w

Keywords

Navigation