Skip to main content
Log in

Design optimization of hybrid uncertain structures with fuzzy-boundary interval variables

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In some special engineering cases, the lower and upper bounds of uncertain parameters are appropriately quantified as fuzzy variables instead of deterministic values. To address such cases, a possibility-based robust design optimization (PBRDO) framework is suggested for the hybrid uncertain structures with fuzzy-boundary interval (FuBI) variables. Firstly, an optimization model with FuBI variables is established where FuBI uncertainties exist in both the objective and constraint functions. The so-called dual robust design is presented and it is adopted to create the optimization objective. The first robust design aims to handle fuzziness while the second one attends to tackle interval property. The failure possibility is employed to construct the optimization constraints in possibilitic context. Then, the fuzzy-boundary interval Taylor series-central difference method (FITS-CDM) is derived to manage FuBI uncertainties and calculate the optimization objective efficiently. Next, the target performance approach (TPA) is employed to process the possibilistic constraints and the simplified constraints can be easily solved by FITS-CDM. The nested-loop PBRDO with FuBI variables can be simplified to a single-loop one based on FITS-CDM and TPA. Finally, the effectiveness of the proposed optimization approach on dealing with FuBI uncertainties is demonstrated by three examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Cai, B.H., Shangguan, W.-B., Lü, H.: An efficient analysis and optimization method for the powertrain mounting system with hybrid random and interval uncertainties. Eng. Optim. 52(9), 1522–1541 (2020a)

    Article  MathSciNet  Google Scholar 

  • Cai, B.H., Shangguan, W.-B., Lü, H., Bo, T.: Hybrid uncertainties-based analysis and optimization design of powertrain mounting systems. Sci. China Technol. Sci. 63(5), 838–850 (2020b)

    Article  Google Scholar 

  • Carneiro, G.N., António, C.C.: Robustness and reliability of composite structures: effects of different sources of uncertainty. Int. J. Mech. Mater. Des. 15(1), 93–107 (2019)

    Article  Google Scholar 

  • Chen, S.H., Yang, X.W.: Interval finite element method for beam structures. Finite Elem. Anal. Des. 34(1), 75–88 (2000)

    Article  MATH  Google Scholar 

  • Du, L., Choi, K.K., Youn, B.D., Gorsich, D.: Possibility-based design optimization method for design problems with both statistical and fuzzy input data. J. Mech. Des. 128(4), 928–935 (2006)

    Article  Google Scholar 

  • Erfani, T., Utyuzhnikov, S.V.: Control of robust design in multiobjective optimization under uncertainties. Struct. Multidiscip. Optim. 45(2), 247–256 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, C., Yang, Y., Lu, K., Gu, F.: Nonlinear vibration analysis of a rotor system with parallel and angular misalignments under uncertainty via a Legendre collocation approach. Int. J. Mech. Mater. Des. 16, 557–568 (2020)

    Article  Google Scholar 

  • Gauger, U., Turrin, S., Hanss, M., Gaul, L.: A new uncertainty analysis for the transformation method. Fuzzy Sets Syst. 159(11), 1273–1291 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, S.X., Lu, Z.Z.: A non-probabilistic robust reliability method for analysis and design optimization of structures with uncertain-but-bounded parameters. Appl. Math. Model. 39(7), 1985–2002 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, C., Han, X., Liu, G.R.: Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval. Comput. Methods Appl. Mech. Eng. 196(49), 4791–4800 (2007)

    Article  MATH  Google Scholar 

  • Jiang, C., Lu, G., Han, X., Liu, L.: A new reliability analysis method for uncertain structures with random and interval variables. Int. J. Mech. Mater. Des. 8(2), 169–182 (2012)

    Article  Google Scholar 

  • Li, G., Lu, Z., Xu, J.: A fuzzy reliability approach for structures based on the probability perspective. Struct. Saf. 54, 10–18 (2015)

    Article  Google Scholar 

  • Liu, B.: Uncertainty Theory—An Introduction to Its Axiomatic Foundations. Springer, Berlin (2004)

    MATH  Google Scholar 

  • Liu, B.: A survey of entropy of fuzzy variables. J. Uncertain Syst. 1, 4–13 (2007)

    Google Scholar 

  • Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10(4), 445–450 (2002)

    Article  Google Scholar 

  • Lü, H., Yu, D.: Optimization design of a disc brake system with hybrid uncertainties. Adv. Eng. Softw. 98, 112–122 (2016)

    Article  Google Scholar 

  • Lü, H., Shangguan, W.-B., Yu, D.: A unified approach for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties. Mech. Syst. Signal Process. 93, 281–298 (2017a)

    Article  Google Scholar 

  • Lü, H., Shangguan, W.-B., Yu, D.: Uncertainty quantification of squeal instability under two fuzzy-interval cases. Fuzzy Sets Syst. 328, 70–82 (2017b)

    Article  MathSciNet  Google Scholar 

  • Lü, H., Shangguan, W.-B., Yu, D.: A unified method and its application to brake instability analysis involving different types of epistemic uncertainties. Appl. Math. Model. 56, 158–171 (2018a)

    Article  MathSciNet  MATH  Google Scholar 

  • Lü, H., Cai, Z., Feng, Q., Shangguan, W.-B., Yu, D.: An improved method for fuzzy-interval uncertainty analysis and its application in brake instability study. Comput. Methods Appl. Mech. Eng. 342, 142–160 (2018b)

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, Y., Kang, Z., Luo, Z., Li, A.: Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model. Struct. Multidiscip. Optim. 39(3), 297–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Marano, G.C., Quaranta, G.: Fuzzy-based robust structural optimization. Int. J. Solids Struct. 45(11–12), 3544–3557 (2008)

    Article  MATH  Google Scholar 

  • Marler, R.T., Arora, J.S.: The weighted sum method for multi-objective optimization: new insights. Struct. Multidiscip. Optim. 41(6), 853–862 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Messac, A., Ismail-Yahaya, A.: Multiobjective robust design using physical programming. Struct. Multidiscip. Optim. 23(5), 357–371 (2002)

    Article  Google Scholar 

  • Möller, B., Graf, W., Beer, M.: Fuzzy structural analysis using α-level optimization. Comput. Mech. 26(6), 547–565 (2000)

    Article  MATH  Google Scholar 

  • Moore, R.: Interval Analysis. Prentice Hall, Englewood Cliff (1966)

    MATH  Google Scholar 

  • Mourelatos, Z.P., Zhou, J.: Reliability estimation and design with insufficient data based on possibility theory. Aiaa J. 43(8), 1696–1705 (2005)

    Article  Google Scholar 

  • Nicolaï, B.M., Egea, J.A., Scheerlinck, N., Banga, J.R., Datta, A.K.: Fuzzy finite element analysis of heat conduction problems with uncertain parameters. J. Food Eng. 103(1), 38–46 (2011)

    Article  Google Scholar 

  • Nie, X.H., Huang, G.H., Li, Y.P., Liu, L.: IFRP: a hybrid interval-parameter fuzzy robust programming approach for waste management planning under uncertainty. J. Environ. Manage. 84(1), 1–11 (2007)

    Article  Google Scholar 

  • Senturk, S., Erginel, N.: Development of fuzzy and control charts using α-cuts. Inf. Sci. 179(10), 1542–1551 (2009)

    Article  Google Scholar 

  • Shi, Y., Lu, Z.: Dynamic reliability analysis model for structure with both random and interval uncertainties. Int. J. Mech. Mater. Des. 15(3), 521–537 (2019)

    Article  Google Scholar 

  • Sofi, A., Romeo, E.: A novel interval finite element method based on the improved interval analysis. Comput. Methods Appl. Mech. Eng. 311, 671–697 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanou, G.: The stochastic finite element method: past, present and future. Comput. Methods Appl. Mech. Eng. 198(9–12), 1031–1051 (2009)

    Article  MATH  Google Scholar 

  • Sun, W., Dong, R., Xu, H.: A novel non-probabilistic approach using interval analysis for robust design optimization. J. Mech. Sci. Technol. 23(12), 3199–3208 (2009)

    Article  MathSciNet  Google Scholar 

  • Tang, Z.C., Lu, Z.Z., Hu, J.X.: An efficient approach for design optimization of structures involving fuzzy variables. Fuzzy Sets Syst. 255, 52–73 (2014)

    Article  MathSciNet  Google Scholar 

  • Wang, C., Matthies, H.G.: A comparative study of two interval-random models for hybrid uncertainty propagation analysis. Mech. Syst. Signal Process. 136, 106531 (2020a)

    Article  Google Scholar 

  • Wang, C., Matthies, H.G.: Coupled fuzzy-interval model and method for structural response analysis with non-probabilistic hybrid uncertainties. Fuzzy Sets Syst. (2020b). https://doi.org/10.1016/j.fss.2020.06.002

    Article  Google Scholar 

  • Wang, C., Qiu, Z., Xu, M., Li, Y.: Novel numerical methods for reliability analysis and optimization in engineering fuzzy heat conduction problem. Struct. Multidiscip. Optim. 56(6), 1–11 (2017a)

    MathSciNet  Google Scholar 

  • Wang, C., Qiu, Z., Xu, M., Li, Y.: Novel reliability-based optimization method for thermal structure with hybrid random, interval and fuzzy parameters. Appl. Math. Model. 47, 573–586 (2017b)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, C., Qiu, Z., Xu, M., Li, Y.: Mixed nonprobabilistic reliability-based optimization method for heat transfer system with fuzzy and interval parameters. IEEE Trans. Reliab. 66(3), 630–640 (2017c)

    Article  Google Scholar 

  • Wang, L., Xiong, C., Yang, Y.: A novel methodology of reliability-based multidisciplinary design optimization under hybrid interval and fuzzy uncertainties. Comput. Methods Appl. Mech. Eng. 337, 439–457 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, L., Liang, J., Chen, W., Qiu, Z.: A nonprobabilistic reliability-based topology optimization method of compliant mechanisms with interval uncertainties. Int. J. Numer. Meth. Eng. 119(13), 1419–1438 (2019a)

    Article  MathSciNet  Google Scholar 

  • Wang, L., Xiong, C., Wang, X., Liu, G., Shi, Q.: Sequential optimization and fuzzy reliability analysis for multidisciplinary systems. Struct. Multidiscip. Optim. 60(3), 1079–1095 (2019b)

    Article  MathSciNet  Google Scholar 

  • Wu, J., Zhang, Y., Chen, L., Luo, Z.: A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl. Math. Model. 37(6), 4578–4591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, J., Gao, J., Luo, Z., Brown, T.: Robust topology optimization for structures under interval uncertainty. Adv. Eng. Softw. 99, 36–48 (2016)

    Article  Google Scholar 

  • Xu, Y., Huang, G., Xu, L.: A fuzzy robust optimization model for waste allocation planning under uncertainty. Environ. Eng. Sci. 31(10), 556–569 (2014)

    Article  Google Scholar 

  • Yin, H., Yu, D., Yin, S., Xia, B.: Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters. Mech. Syst. Signal Process. 102, 329–345 (2018)

    Article  Google Scholar 

  • Youn, B.D., Choi, K.K., Du, L., Gorsich, D.: Integration of possibility-based optimization and robust design for epistemic uncertainty. J. Mech. Des. 129(8), 876–882 (2007)

    Article  Google Scholar 

  • Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, Z., Han, X., Jiang, C., Zhou, X.: A nonlinear interval-based optimization method with local-densifying approximation technique. Struct. Multidiscip. Optim. 42(4), 559–573 (2010)

    Article  Google Scholar 

  • Zhong, Y.: Multi-objective optimizated applications in the safety design of vehicle collision. Hunan University [Master] (2013)

Download references

Acknowledgements

The paper is supported by the National Natural Science Foundation of China (No. 51975217), the Natural Science Foundation of Guangdong Province, China (No. 2020A1515010352), the Science and Technology Program of Guangzhou City, China (No. 201804010092), the Fundamental Research Funds for the Central Universities, SCUT (No. 2019MS058 and No. 2019MS064) and China Postdoctoral Science Foundation (No. 2019M652880). The authors would also like to thank the editor and the anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yin.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, H., Yang, K., Huang, X. et al. Design optimization of hybrid uncertain structures with fuzzy-boundary interval variables. Int J Mech Mater Des 17, 201–224 (2021). https://doi.org/10.1007/s10999-020-09523-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-020-09523-9

Keywords

Navigation