Skip to main content
Log in

Micromechanics-based modeling of elastic modulus and coefficient of thermal expansion for CNT-metal nanocomposites: effects of waviness, clustering and aluminum carbide layer

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A micromechanical model is analytically developed to estimate the elastic modulus and the coefficient of thermal expansion (CTE) of the carbon nanotube (CNT)-reinforced metal matrix nanocomposites (MMNCs). The effects of two important microstructural features, including the CNT clusters and the waviness on the thermo-elastic response are investigated. The formation of aluminum carbide (Al4C3) layer due to the interaction between the CNT and the metal matrix is considered. A good agreement is found between the available experimental data and the simulation results considering the waviness, clustering, and Al4C3 interphase. The influences of volume fraction, and dispersion type of CNTs and Al4C3 layer thickness on the elastic modulus and the CTE of the CNT-metal nanocomposites are examined. The non-straight shape and the clustering of CNTs are two critical factors that can significantly degrade the thermo-elastic properties. From the mechanical viewpoint on designing the CNT-metal nanocomposites, producing the homogeneous microstructure without the CNT clusters and using the straight CNTs are necessary factors to obtain the maximum level of the thermomechanical performances. The numerical results show that the formation of the Al4C3 interphase may improve the MMNC macroscopic engineering constants. It is observed that aligning the CNTs into the metal matrixes leads to a significant improvement in the MMNC thermo-elastic properties. The proposed micromechanical approach can be a suitable model to predict the elastic modulus and the CTE of the CNT-reinforced MMNCs considering the important microstructural features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Aboudi, J.: The effective moduli of short-fiber composites. Int. J. Solids Struct. 19(8), 693–707 (1983)

    MATH  Google Scholar 

  • Aboudi, J.: Micromechanical analysis of thermo-inelastic multiphase short-fiber composites. Compos. Eng. 5(7), 839–850 (1995)

    Google Scholar 

  • Ahmadi, M., Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical analysis of elastic modulus of carbon nanotube-aluminum nanocomposites with random microstructures. J. Alloys Compd. 779, 433–439 (2019)

    Google Scholar 

  • Ansari, R., Hassanzadeh-Aghdam, M.K., Darvizeh, A.: On elastic modulus and biaxial initial yield surface of carbon nanotube-reinforced aluminum nanocomposites. Mech. Mater. 101, 14–26 (2016)

    Google Scholar 

  • Aydogdu, M., Arda, M.: Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity. Int. J. Mech. Mater. Des. 12(1), 71–84 (2016)

    Google Scholar 

  • Bakshi, S.R., Agarwal, A.: An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49(2), 533–544 (2011)

    Google Scholar 

  • Bakshi, S.R., Keshri, A.K., Singh, V., Seal, S., Agarwal, A.: Interface in carbon nanotube reinforced aluminum silicon composites: thermodynamic analysis and experimental verification. J. Alloys Compd. 481(1–2), 207–213 (2009)

    Google Scholar 

  • Chen, B., Jia, L., Li, S., Imai, H., Takahashi, M., Kondoh, K.: In situ synthesized Al4C3 nanorods with excellent strengthening effect in aluminum matrix composites. Adv. Eng. Mater. 16(8), 972–975 (2014)

    Google Scholar 

  • Chen, B., Shen, J., Ye, X., Jia, L., Li, S., Umeda, J., Takahashi, M., Kondoh, K.: Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater. 140, 317–325 (2017)

    Google Scholar 

  • Choi, H., Shin, J., Min, B., Park, J., Bae, D.: Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J. Mater. Res. 24(8), 2610–2616 (2009)

    Google Scholar 

  • Dat, N.D., Quan, T.Q., Duc, N.D.: Nonlinear thermal vibration of carbon nanotube polymer composite elliptical cylindrical shells. J. Mech. Mater. Design, Int (2019). https://doi.org/10.1007/s10999-019-09464-y

    Book  Google Scholar 

  • Deng, C.F., Ma, Y.X., Zhang, P., Zhang, X.X., Wang, D.Z.: Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater. Lett. 62(15), 2301–2303 (2008)

    Google Scholar 

  • Dinaharan, I., Balakrishnan, M., Selvam, J.D.R., Akinlabi, E.T.: Microstructural characterization and tensile behavior of friction stir processed AA6061/Al2Cu cast aluminum matrix composites. J. Alloys Compd. 781, 270–279 (2019)

    Google Scholar 

  • Esawi, A.M., El Borady, M.A.: Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 68(2), 486–492 (2008)

    Google Scholar 

  • Fisher, F.T., Bradshaw, R.D., Brinson, L.C.: Fiber waviness in nanotube-reinforced polymer composites-I: modulus predictions using effective nanotube properties. Compos. Sci. Technol. 63(11), 1689–1703 (2003)

    Google Scholar 

  • Ginga, N.J., Chen, W., Sitaraman, S.K.: Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude. Carbon 66, 57–66 (2014)

    Google Scholar 

  • Guo, B., Chen, B., Zhang, X., Cen, X., Wang, X., Song, M., Ni, S., Yi, J., Shen, T., Du, Y.: Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes. Carbon 135, 224–235 (2018)

    Google Scholar 

  • Haghgoo, M., Ansari, R., Hassanzadeh-Aghdam, M.K.: Effective elastoplastic properties of carbon nanotube-reinforced aluminum nanocomposites considering the residual stresses. J. Alloys Compd. 752, 476–488 (2018)

    Google Scholar 

  • He, C.N., Zhao, N.Q., Shi, C.S., Song, S.Z.: Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition. J. Alloys Compd. 487(1–2), 258–262 (2009)

    Google Scholar 

  • Hsiao, H.M., Daniel, I.M.: Elastic properties of composites with fiber waviness. Compos. A Appl. Sci. Manuf. 27(10), 931–941 (1996)

    Google Scholar 

  • Hu, N., Qiu, J., Li, Y., Chang, C., Atobe, S., Fukunaga, H., Liu, Y., Ning, H., Wu, L., Li, J., Yuan, W.: Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites. Nanoscale Res. Lett. 8(1), 15 (2013)

    Google Scholar 

  • Kashyap, K.T., Koppad, P.G., Puneeth, K.B., Ram, H.A., Mallikarjuna, H.M.: Elastic modulus of multiwalled carbon nanotubes reinforced aluminium matrix nanocomposite—a theoretical approach. Comput. Mater. Sci. 50(8), 2493–2495 (2011)

    Google Scholar 

  • Khoddam, S., Tian, L., Sapanathan, T., Hodgson, P.D., Zarei-Hanzaki, A.: Latest developments in modeling and characterization of joining metal based hybrid materials. Adv. Eng. Mater. 20(9), 1800048 (2018)

    Google Scholar 

  • Kundalwal, S.I., Meguid, S.A.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech.-A/Solids 53, 241–253 (2015)

    MathSciNet  MATH  Google Scholar 

  • Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. Eur. J. Mech.-A/Solids 64, 69–84 (2017)

    MathSciNet  MATH  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method. Eur. J. Mech. A/Solids 36, 191–203 (2012)

    Google Scholar 

  • Kuo, C.M., Takahashi, K., Chou, T.W.: Effect of fiber waviness on the nonlinear elastic behavior of flexible composites. J. Compos. Mater. 22(11), 1004–1025 (1988)

    Google Scholar 

  • Kwon, H., Estili, M., Takagi, K., Miyazaki, T., Kawasaki, A.: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47(3), 570–577 (2009)

    Google Scholar 

  • Li, H., Kang, J., He, C., Zhao, N., Liang, C., Li, B.: Mechanical properties and interfacial analysis of aluminum matrix composites reinforced by carbon nanotubes with diverse structures. Mater. Sci. Eng., A 577, 120–124 (2013)

    Google Scholar 

  • Liu, Z.Y., Xiao, B.L., Wang, W.G., Ma, Z.Y.: Effect of carbon nanotube orientation on mechanical properties and thermal expansion coefficient of carbon nanotube-reinforced aluminum matrix composites. Acta Metallurgica Sinica (English Letters) 27(5), 901–908 (2014)

    Google Scholar 

  • Liu, Z.Y., Zhao, K., Xiao, B.L., Wang, W.G., Ma, Z.Y.: Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing. Mater. Des. 97, 424–430 (2016)

    Google Scholar 

  • Liu, X.Q., Li, C.J., Yi, J.H., Prashanth, K.G., Chawake, N., Tao, J.M., You, X., Liu, Y.C., Eckert, J.: Enhancing the interface bonding in carbon nanotubes reinforced Al matrix composites by the in situ formation of TiAl3 and TiC. J. Alloys Compd. 765, 98–105 (2018)

    Google Scholar 

  • Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Google Scholar 

  • Munir, K.S., Zheng, Y., Zhang, D., Lin, J., Li, Y., Wen, C.: Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater. Sci. Eng., A 696, 10–25 (2017)

    Google Scholar 

  • Narayanasamy, R., Anandakrishnan, V., Pandey, K.S.: Effect of geometric work-hardening and matrix work-hardening on new constitutive relationship for aluminium–alumina P/M composite during cold upsetting. Int. J. Mech. Mater. Des. 4(3), 301 (2008)

    Google Scholar 

  • Nouri, N., Ziaei-Rad, S., Adibi, S., Karimzadeh, F.: Fabrication and mechanical property prediction of carbon nanotube reinforced Aluminum nanocomposites. Mater. Des. 34, 1–14 (2012)

    Google Scholar 

  • Ostovan, F., Matori, K.A., Toozandehjani, M., Oskoueian, A., Yusoff, H.M., Yunus, R., Ariff, A.H.M., Quah, H.J., Lim, W.F.: Effects of CNTs content and milling time on mechanical behavior of MWCNT-reinforced aluminum nanocomposites. Mater. Chem. Phys. 166, 160–166 (2015)

    Google Scholar 

  • Pan, Y., Weng, G.J., Meguid, S.A., Bao, W.S., Zhu, Z.H., Hamouda, A.M.S.: Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites. Mech. Mater. 58, 1–11 (2013)

    Google Scholar 

  • Pan, J., Bian, L., Zhao, H., Zhao, Y.: A new micromechanics model and effective elastic modulus of nanotube reinforced composites. Comput. Mater. Sci. 113, 21–26 (2016)

    Google Scholar 

  • Park, J.G., Keum, D.H., Lee, Y.H.: Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon 95, 690–698 (2015)

    Google Scholar 

  • Pérez-Bustamante, R., Gómez-Esparza, C.D., Estrada-Guel, I., Miki-Yoshida, M., Licea-Jiménez, L., Pérez-García, S.A., Martínez-Sánchez, R.: Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling. Mater. Sci. Eng., A 502(1–2), 159–163 (2009)

    Google Scholar 

  • Rawal, S.P.: Metal-matrix composites for space applications. JOM 53(4), 14–17 (2001)

    Google Scholar 

  • Saadallah, S., Cablé, A., Hamamda, S., Chetehouna, K., Sahli, M., Boubertakh, A., Revo, S., Gascoin, N.: Structural and thermal characterization of multiwall carbon nanotubes (MWCNTs)/aluminum (Al) nanocomposites. Compos. B Eng. 151, 232–236 (2018)

    Google Scholar 

  • Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38(8–10), 884–907 (2006)

    Google Scholar 

  • Shao, L.H., Luo, R.Y., Bai, S.L., Wang, J.: Prediction of effective moduli of carbon nanotube-reinforced composites with waviness and debonding. Compos. Struct. 87(3), 274–281 (2009)

    Google Scholar 

  • Sharma, M., Sharma, V.: Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite. Int. J. Miner. Metall. Mater. 23(2), 222–233 (2016)

    Google Scholar 

  • Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C., Gao, H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. 126(3), 250–257 (2004)

    Google Scholar 

  • Shirasu, K., Yamamoto, G., Tamaki, I., Ogasawara, T., Shimamura, Y., Inoue, Y., Hashida, T.: Negative axial thermal expansion coefficient of carbon nanotubes: experimental determination based on measurements of coefficient of thermal expansion for aligned carbon nanotube reinforced epoxy composites. Carbon 95, 904–909 (2015)

    Google Scholar 

  • Shuai, J., Xiong, L., Zhu, L., Li, W.: Enhanced strength and excellent transport properties of a superaligned carbon nanotubes reinforced copper matrix laminar composite. Compos. A Appl. Sci. Manuf. 88, 148–155 (2016)

    Google Scholar 

  • Subodh, K.M., Pappu, M.L.N., Goldberg, R.K.: Micromechanics of particulate reinforced composites. NASA Tech. Memo. 107276, 154 (1996)

    Google Scholar 

  • Tang, Y., Cong, H., Zhong, R., Cheng, H.M.: Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum. Carbon 42(15), 3260–3262 (2004)

    Google Scholar 

  • Tian, L., Russell, A., Anderson, I.: A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal–metal composites. J. Mater. Sci. 49(7), 2787–2794 (2014)

    Google Scholar 

  • Wang, J., Pyrz, R.: Prediction of the overall moduli of layered silicate-reinforced nanocomposites-part I: basic theory and formulas. Compos. Sci. Technol. 64(7–8), 925–934 (2004)

    Google Scholar 

  • Xu, R., Tan, Z., Xiong, D., Fan, G., Guo, Q., Zhang, J., Su, Y., Li, Z., Zhang, D.: Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Compos. A Appl. Sci. Manuf. 96, 57–66 (2017)

    Google Scholar 

  • Yanase, K., Moriyama, S., Ju, J.W.: Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites. Acta Mech. 224(7), 1351–1364 (2013)

    Google Scholar 

  • Yang, P., You, X., Yi, J., Fang, D., Bao, R., Shen, T., Liu, Y., Tao, J., Li, C., Tan, S., Guo, S.: Simultaneous achievement of high strength, excellent ductility, and good electrical conductivity in carbon nanotube/copper composites. J. Alloys Compd, 752, 431–439 (2018)

    Google Scholar 

  • Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Wang or Yuan Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yuan, Y. Micromechanics-based modeling of elastic modulus and coefficient of thermal expansion for CNT-metal nanocomposites: effects of waviness, clustering and aluminum carbide layer. Int J Mech Mater Des 16, 783–799 (2020). https://doi.org/10.1007/s10999-020-09503-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-020-09503-z

Keywords

Navigation