Analysis and design of compacted IWRC meshed model under axial strain

Abstract

Wire ropes are one of the most complex shapes due to the helical coiling of wires. It is difficult to generate a meshed model of even the classical circular wire rope. In this paper a more complex form which is known as compacted wire rope is modeled in 3D. The originality of this work is that, it is the first time a multi-layered compacted wire rope is generated and brought to the literature. The written code permits to create any length of compacted independent wire rope core geometry and to change wire radiuses and pitch lengths easily. Meanwhile flexibility of the code makes it easier to generate different kind of compacted independent wire rope core which is ready for numerical analysis. Compacted wire ropes have increased wear resistance and tensile strength. Due to its flattened surface their usage on a sheave or a pulley provides less wearing and breaking of wires while more tensile strength and increased lifetime. With the compaction process diameter of the wire rope decreases which results a decrease on the reaction moment also. This modeling issue can be used to create new type of complex wire rope models in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Bridon-Bekaert: The ropes group, https://www.bridon-bekaert.com/en-gb (2018). Accessed 23 Sept 2018

  2. Costello, G.A.: Theory of wire rope. Springer, Berlin (1990)

    Book  Google Scholar 

  3. Erdönmez, C., İmrak, C.E.: Modeling techniques of nested helical structure based geometry for numerical analysis. Strojniški vestnik J. Mech. Eng. (2011a). https://doi.org/10.5545/sv-jme.2009.006

    Article  Google Scholar 

  4. Erdönmez, C., İmrak, C.E.: A finite element model for independent wire rope core with double helical geometry subjected to axial loads. Sadhana (2011b). https://doi.org/10.1007/s12046-011-0053-1

    Article  Google Scholar 

  5. Erdönmez, C.: n-tuple complex helical geometry modeling using parametric equations. Eng. Comput. (2014). https://doi.org/10.1007/s00366-013-0319-9

    Article  Google Scholar 

  6. Fedorko, G., Stanova, E., Molnar, V., Husakova, N., Kmet, S.: Computer modelling and finite element analysis of spiral triangular strands. Adv. Eng. Softw. (2014). https://doi.org/10.1016/j.advengsoft.2014.02.004

    Article  Google Scholar 

  7. Frikha, A., Cartraud, P., Treyssède, F.: Mechanical modeling of helical structures accounting for translational invariance. Part 1: static behavior. Int. J. Solids Struct. (2013). https://doi.org/10.1016/j.ijsolstr.2013.01.010

    Article  Google Scholar 

  8. Ivanco, V., Kmet, S., Fedorko, G.: Finite element simulation of creep of spiral strands. Eng. Struct. (2016). https://doi.org/10.1016/j.engstruct.2016.02.053

    Article  Google Scholar 

  9. Jiang, W.G., Yao, M.S., Walton, J.M.: A concise finite element model for simple straight wire rope strand. Int. J. Mech. Sci. (1999). https://doi.org/10.1016/S0020-7403(98)00039-3

    Article  MATH  Google Scholar 

  10. Jiang, W.G., Henshall, J.L., Walton, J.M.: A concise finite element model for three-layered straight wire rope strand. Int. J. Mech. Sci. (2000). https://doi.org/10.1016/S0020-7403(98)00111-8

    Article  MATH  Google Scholar 

  11. Jiang, W.G., Henshall, J.L.: A novel finite element model for helical springs. Finite Elem. Anal. Des. (2000). https://doi.org/10.1016/S0168-874X(99)00076-1

    Article  MATH  Google Scholar 

  12. Love, A.E.H.: A treatise on the mathematical theory of elasticity, 4th edn. Dover, New York (1944)

    MATH  Google Scholar 

  13. Ma, W., Zhu, Z.C., Peng, Y.X., Chen, G.A.: Computer-aided modeling of wire ropes bent over a sheave. Adv. Eng. Softw. (2015). https://doi.org/10.1016/j.advengsoft.2015.06.006

    Article  Google Scholar 

  14. Nawrocki, A., Labrosse, M.: A finite element model for simple straight wire rope strands. Comput. Struct. (2000). https://doi.org/10.1016/S0045-7949(00)00026-2

    Article  Google Scholar 

  15. Ramsey, H.: A Theory of thin rods with application to helical constituent wires in cables. Int. J. Mech. Sci. (1988). https://doi.org/10.1016/0020-7403(88)90099-9

    Article  MATH  Google Scholar 

  16. Ridge, I.M.L., O’Hear, N., Verreet, R., et al.: High strength fibre cored steel wire rope for deep hoisting applications. In: OIPEEC Conference Proceedings. Johannesburg, pp. 225–240 (2007)

  17. Stanova, E., Fedorko, G., Fabian, M., Kmet, S.: Computer modelling of wire strands and ropes Part I: theory and computer implementation. Adv. Eng. Softw. (2011a). https://doi.org/10.1016/j.advengsoft.2011.02.008

    Article  MATH  Google Scholar 

  18. Stanova, E., Fedorko, G., Fabian, M., Kmet, S.: Computer modelling of wire strands and ropes part II: finite element-based applications. Adv. Eng. Softw. (2011b). https://doi.org/10.1016/j.advengsoft.2011.02.010

    Article  MATH  Google Scholar 

  19. Stanova, E., Fedorko, G., Kmet, S., Molnar, V., Fabian, M.: Finite element analysis of spiral strands with different shapes subjected to axial loads. Adv. Eng. Softw. (2015). https://doi.org/10.1016/j.advengsoft.2015.01.004

    Article  Google Scholar 

  20. Sun, J.-F., Wang, G.-L., Zhang, H.-O.: Elasto-plastic contact problem of laying wire rope using FE analysis. Int. J. Adv. Manuf. Technol. (2005). https://doi.org/10.1007/s00170-004-2120-9

    Article  Google Scholar 

  21. Usabiaga, H., Pagalday, J.M.: Analytical procedure for modelling recursively and wire by wire stranded ropes subjected to traction and torsion loads. Int. J. Solids Struct. (2008). https://doi.org/10.1016/j.ijsolstr.2008.04.009

    Article  MATH  Google Scholar 

  22. Velinsky, S.A., Anderson, G.L., Costello, G.A.: Wire rope with complex cross sections. J. Eng. Mech. (1984). https://doi.org/10.1061/(ASCE)0733-9399(1984)110:3(380)

    Article  Google Scholar 

  23. Velinsky, S.A.: Design and mechanics of multi-lay wire strands. Trans. ASME J. Mech. Trans. Autom. Des. 110, 152–160 (1988)

    Article  Google Scholar 

  24. Velinsky, S.A.: On the design of wire rope. Trans. ASME J. Mech. Trans. Autom. Des. 111, 382–388 (1989)

    Article  Google Scholar 

  25. Wang, D., Zhang, D., Wang, S., Ge, S.: Finite element analysis of hoisting rope and fretting wear evolution and fatigue life estimation of steel wires. Eng. Fail. Anal. (2013). https://doi.org/10.1016/j.engfailanal.2012.08.014

    Article  Google Scholar 

  26. Wang, R.C., Miscoe, A.J., McKewan, W.M.: Model for the structure of round-strand wire ropes, U.S. Department of Health and Human Services. Publication No. 98-148, Report of Investigations 9644:1–19 (1998)

  27. Wang, X.-Y., Meng, X.-B., Wang, J.-X., Sun, Y.-H., Gao, K.: Mathematical modeling and geometric analysis for wire rope strands. Appl. Math. Model. (2015). https://doi.org/10.1016/j.apm.2014.07.015

    MathSciNet  Article  MATH  Google Scholar 

  28. William, J.G.: Compacted stranded cable, United States Patent Office. 3,234,722, Filed Apr. 12, 1963, Ser. No. 272,686 (1966)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Erdönmez.

Ethics declarations

Conflict of interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erdönmez, C. Analysis and design of compacted IWRC meshed model under axial strain. Int J Mech Mater Des 16, 647–661 (2020). https://doi.org/10.1007/s10999-019-09481-x

Download citation

Keywords

  • Compacted wire rope modeling
  • Strand compaction
  • Increased wear resistance
  • Wire rope strength
  • Flattened wire
  • Compacted IWRC