Skip to main content
Log in

A molecular dynamics study on the interfacial properties of carbene-functionalized graphene/polymer nanocomposites

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Atomic decoration of nanofillers, e.g. graphene sheets (GRs), is of extreme importance in their adequate dispersion into the matrices and load transfer issues for nanocomposites because of its effectiveness for improving interfacial properties of the final system. Therefore, based on molecular dynamics simulations, the average pull-out force and interaction energy of carbene-functionalized graphene sheets incorporated into various polymer matrices (cfGRs@polymers) are determined in this paper. The effect of covalent functionalization on the parameters related to the interfacial properties is investigated in terms of weight percentage and distribution patterns of attached carbene to the GR, namely regular and random, which are arranged on one side and both sides of the GR (OS- and TS-GR) to construct four models of cfGRs. In general, the cfGR@polymers show higher average pull-out force and interaction energy compared to the pure GR@polymers. The average pull-out force of randomly and regularly OS-cfGR embedded in the polymer matrices, i.e. Aramid, polyethylene (PE) and polypropylene, decreases as the weight of carbene increases. Also, the similar results are obtained for the TS-cfGRs@Aramid and PE in the regular distribution pattern. However, by increasing the degree of functionalization, the average pull-out force of randomly TS-cfGR@polymers increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Awasthi, A.P., Lagoudas, D.C., Hammerand, D.C.: Modeling of graphene–polymer interfacial mechanical behavior using molecular dynamics. Modell. Simul. Mater. Sci. Eng. 17(1), 015002 (2008)

    Google Scholar 

  • Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y.: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008)

    Google Scholar 

  • Cao, Y., Feng, J., Wu, P.: Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly (lactic acid) composites. Carbon 48(13), 3834–3839 (2010)

    Google Scholar 

  • Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)

    Google Scholar 

  • Das, B., Prasad, K.E., Ramamurty, U., Rao, C.N.: Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology. 20(12), 125705 (2009)

    Google Scholar 

  • Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H., Evmenenko, G., Nguyen, S.T., Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448(7152), 457 (2007)

    Google Scholar 

  • Dimitrakakis, G.K., Tylianakis, E., Froudakis, G.E.: Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 8(10), 3166–3170 (2008)

    Google Scholar 

  • Eda, G., Chhowalla, M.: Graphene-based composite thin films for electronics. Nano Lett. 9(2), 814–818 (2009)

    Google Scholar 

  • Fan, D., Lue, L., Yang, S.: Molecular dynamics study of interfacial stress transfer in graphene-oxide cementitious composites. Comput. Mater. Sci. 139, 56–64 (2017)

    Google Scholar 

  • Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S.: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19(38), 7098–7105 (2009)

    Google Scholar 

  • Geim, A.K.: Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)

    Google Scholar 

  • Grindon, C., Harris, S., Evans, T., Novik, K., Coveney, P., Laughton, C.: Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2004(362), 1373–1386 (1820)

    MATH  Google Scholar 

  • Hadden, C.M., Klimek-McDonald, D.R., Pineda, E.J., King, J.A., Reichanadter, A.M., Miskioglu, I., Gowtham, S., Odegard, G.M.: Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: multiscale modeling and experiments. Carbon 95, 100–112 (2015)

    Google Scholar 

  • Haghighi, S., Ansari, R., Ajori, S.: Influence of polyethylene cross-linked functionalization on the interfacial properties of carbon nanotube-reinforced polymer nanocomposites: a molecular dynamics study. J. Mol. Model. 25, 105 (2019)

    Google Scholar 

  • Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985)

    Google Scholar 

  • Hummers Jr., W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)

    Google Scholar 

  • Im, H., Kim, J.: Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon 50(15), 5429–5440 (2012)

    Google Scholar 

  • Jiang, D.E., Cooper, V.R., Dai, S.: Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9(12), 4019–4024 (2009)

    Google Scholar 

  • Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)

    Google Scholar 

  • Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., Lee, J.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35(11), 1350–1375 (2010)

    Google Scholar 

  • Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Google Scholar 

  • Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., Ruoff, R.S.: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359–4363 (2009)

    Google Scholar 

  • Li, M., Zhou, H., Zhang, Y., Liao, Y., Zhou, H.: The effect of defects on the interfacial mechanical properties of graphene/epoxy composites. RSC Adv. 7(73), 46101–46108 (2017)

    Google Scholar 

  • Liu, F., Hu, N., Ning, H., Liu, Y., Li, Y., Wu, L.: Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene. Comput. Mater. Sci. 108, 160–167 (2015)

    Google Scholar 

  • Liu, F., Hu, N., Zhang, J., Atobe, S., Weng, S., Ning, H., Liu, Y., Wu, L., Zhao, Y., Mo, F., Fu, S.: The interfacial mechanical properties of functionalized graphene–polymer nanocomposites. RSC Adv. 6(71), 66658–66664 (2016)

    Google Scholar 

  • Liu, F., Hu, N., Ning, H., Atobe, S., Yan, C., Liu, Y., Wu, L., Liu, X., Fu, S., Xu, C., Li, Y.: Investigation on the interfacial mechanical properties of hybrid graphene-carbon nanotube/polymer nanocomposites. Carbon 115, 694–700 (2017)

    Google Scholar 

  • Lv, C., Xue, Q., Xia, D., Ma, M., Xie, J., Chen, H.: Effect of chemisorption on the interfacial bonding characteristics of graphene–polymer composites. J. Phys. Chem. C 114(14), 6588–6594 (2010)

    Google Scholar 

  • Lv, C., Xue, Q., Xia, D., Ma, M.: Effect of chemisorption structure on the interfacial bonding characteristics of graphene–polymer composites. Appl. Surf. Sci. 258(6), 2077–2082 (2012)

    Google Scholar 

  • Lv, S., Liu, J., Sun, T., Ma, Y., Zhou, Q.: Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Constr. Build. Mater. 64, 231–239 (2014)

    Google Scholar 

  • McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K., Aksay, I.A.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)

    Google Scholar 

  • Mokhalingam, A., Kumar, D., Srivastava, A.: Mechanical behaviour of graphene reinforced aluminum nano composites. Mater. Today: Proc. 4(2), 3952–3958 (2017)

    Google Scholar 

  • Patchkovskii, S., John, S.T., Yurchenko, S.N., Zhechkov, L., Heine, T., Seifert, G.: Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. 102(30), 10439–10444 (2005)

    Google Scholar 

  • Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–9 (1995)

    MATH  Google Scholar 

  • Rahman, R., Haque, A.: Molecular modeling of crosslinked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties. Compos. B Eng. 54, 353–364 (2013)

    Google Scholar 

  • Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X.R., Ruoff, R.S., Nguyen, S.T.: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3(6), 327 (2008)

    Google Scholar 

  • Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z., Sheehan, P.E.: Reduced graphene oxide molecular sensors. Nano Lett. 8(10), 3137–3140 (2008)

    Google Scholar 

  • Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652 (2007)

    Google Scholar 

  • Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487 (2010)

    Google Scholar 

  • Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16(2), 155–158 (2006)

    Google Scholar 

  • Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Google Scholar 

  • Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., Yao, J.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)

    Google Scholar 

  • Wang, X., Xing, W., Zhang, P., Song, L., Yang, H., Hu, Y.: Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos. Sci. Technol. 72(6), 737–743 (2012)

    Google Scholar 

  • Wang, M.C., Lai, Z.B., Galpaya, D., Yan, C., Hu, N., Zhou, L.M.: Atomistic simulation of surface functionalization on the interfacial properties of graphene-polymer nanocomposites. J. Appl. Phys. 115(12), 123520 (2014)

    Google Scholar 

  • Williams, G., Seger, B., Kamat, P.V.: TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7), 1487–1491 (2008)

    Google Scholar 

  • Wu, Q., Xu, Y., Yao, Z., Liu, A., Shi, G.: Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4), 1963–1970 (2010)

    Google Scholar 

  • Zhang, C.L., Shen, H.S.: Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation. J. Phys. D Appl. Phys. 41(5), 055404 (2008)

    Google Scholar 

  • Zhang, Y., Zhuang, X., Muthu, J., Mabrouki, T., Fontaine, M., Gong, Y., Rabczuk, T.: Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation. Compos. B Eng. 63, 27–33 (2014)

    Google Scholar 

  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the High Performance Computing Research Center (HPCRC) - Akmirkabir university of Technology for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighi, S., Ansari, R. & Ajori, S. A molecular dynamics study on the interfacial properties of carbene-functionalized graphene/polymer nanocomposites. Int J Mech Mater Des 16, 387–400 (2020). https://doi.org/10.1007/s10999-019-09472-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-019-09472-y

Keywords

Navigation