Skip to main content

Nonlinear thermal vibration of carbon nanotube polymer composite elliptical cylindrical shells

Abstract

This paper investigated the nonlinear vibration and dynamic response of the carbon nanotube polymer composite elliptical cylindrical shells on elastic foundations in thermal environment. The material properties of the nanocomposite elliptical cylindrical shells are assumed to depend on temperature and graded in the thickness direction according to various linear functions. The shell is subjected to the combination of the uniformly distributed transverse load in harmonic form and the uniform temperature rise. The motion and geometrical compatibility equations are derived based on the Reddy’s higher order shear deformation shell theory. The natural frequencies and the deflection amplitude–time curves of the shell are determined by using the Galerkin method and fourth-order Runge–Kutta method. The numerical results show not only the positive influences of carbon nanotube volume fraction and elastic foundations but also the negative influences of initial imperfection and temperature increment on the nonlinear vibration and dynamic response of the carbon nanotube polymer composite elliptical cylindrical shells. The reliability of the present results is verified by comparing with other publications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Ahmed, M.K.: Buckling behavior of a radially loaded corrugated orthotropic thin-elliptic cylindrical shell on an elastic foundation. Thin Walled Struct. 107, 90–100 (2016)

    Article  Google Scholar 

  • Alibeigloo, A.: Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity. Eur. J. Mech. A Solids 44, 104–115 (2014)

    Article  MathSciNet  Google Scholar 

  • Arani, A.G., Haghparast, E., Khoddami Maraghi, Z., Amir, S.: CNTRC cylinder under non-axisymmetric thermo-mechanical loads and uniform electromagnetic fields. Arab. J. Sci. Eng. 39, 9057–9069 (2014)

    Article  Google Scholar 

  • Asadi, H., Wang, Q.: Dynamic stability analysis of a pressurized FG-CNTRC cylindrical shell interacting with supersonic airflow. Compos. B Eng. 118, 15–25 (2017)

    Article  Google Scholar 

  • Baloch, W.L., Khushnood, R.A., Khaliq, W.: Influence of multi-walled carbon nanotubes on the residual performance of concrete exposed to high temperatures. Constr. Build. Mater. 185, 44–56 (2018)

    Article  Google Scholar 

  • Brush, D.D., Almroth, B.O.: Buckling of bars, plates and shells. McGraw-Hill, New York (1975)

    Book  Google Scholar 

  • Chen, Y., Jin, G., Zhang, C., Ye, T., Xue, Y.: Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory. Compos. B Eng. 153, 376–386 (2018)

    Article  Google Scholar 

  • Dastjerdi, S., Abbasi, M., Yazdanparast, L.: A new modified higher-order shear deformation theory for nonlinear analysis of macro- and nano-annular sector plates using the extended Kantorovich method in conjunction with SAPM. Acta Mech. 228, 3381–3401 (2017)

    Article  MathSciNet  Google Scholar 

  • Duc, N.D., Quan, T.Q., Luat, V.D.: Nonlinear dynamic analysis and vibration of shear deformable piezoelectric FGM double curved shallow shells under damping-thermo-electro-mechanical loads. Compos. Struct. 125, 29–40 (2015)

    Article  Google Scholar 

  • Duc, N.D., Tuan, N.D., Tran, P., Cong, P.H., Nguyen, P.D.: Nonlinear stability of eccentrically stiffened S-FGM elliptical cylindrical shells in thermal environment. Thin Walled Struct. 108, 280–290 (2016)

    Article  Google Scholar 

  • Duc, N.D., Quan, T.Q., Khoa, N.D.: New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature. Aerosp. Sci. Technol. 71, 360–372 (2017)

    Article  Google Scholar 

  • Ganapathi, M., Patel, B.P., Patel, H.G.: Free flexural vibration behavior of laminated angle-ply elliptical cylindrical shells. Comput. Struct. 82, 509–518 (2004)

    Article  Google Scholar 

  • Jadhav, P., Bajoria, K.: Stability analysis of thick piezoelectric metal based FGM plate using first order and higher order shear deformation theory. Int. J. Mech. Mater. Des. 11, 387–403 (2015)

    Article  Google Scholar 

  • Kazemi, E., Darvizeh, M., Darvizeh, A., Ansari, R.: An investigation of the buckling behavior of composite elliptical cylindrical shells with piezoelectric layers. Acta Mech. 223, 2225–2242 (2012)

    Article  MathSciNet  Google Scholar 

  • Keleshteri, M.M., Asadi, H., Wang, Q.: Postbuckling analysis of smart FG-CNTRC annular sector plates with surface-bonded piezoelectric layers using generalized differential quadrature method. Comput. Methods Appl. Mech. Eng. 325, 689–710 (2017)

    Article  MathSciNet  Google Scholar 

  • Khalifa, M.: Effects of non-uniform Winkler foundation and non-homogeneity on the free vibration of an orthotropic elliptical cylindrical shell. Eur. J. Mech. A Solids 49, 570–581 (2015)

    Article  MathSciNet  Google Scholar 

  • Kumar, R.S., Kundalwal, S.I., Ray, M.C.: Control of large amplitude vibrations of doubly curved sandwich shells composed of fuzzy fiber reinforced composite facings. Aerosp. Sci. Technol. 70, 10–28 (2017)

    Article  Google Scholar 

  • Kundalwal, S.I., Meguid, S.A.: Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells. Acta Mech. 226, 2035–2052 (2015)

    Article  MathSciNet  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Smart damping of fuzzy fiber reinforced composite plates using 1–3 piezoelectric composites. J. Vib. Control 22, 1526–1546 (2016)

    Article  MathSciNet  Google Scholar 

  • Lam, K.Y., Loy, C.T.: Effects of boundary conditions on frequencies of a multilayered cylindrical shell. J. Sound Vib. 188, 363–384 (1995)

    Article  Google Scholar 

  • Lei, Z.X., Zhang, L.W., Liew, K.M.: Buckling analysis of CNT reinforced functionally graded laminated composite plates. Compos. Struct. 152, 62–73 (2016)

    Article  Google Scholar 

  • Li, T.Y., Xiong, L., Zhu, X., Xiong, Y.P., Zhang, G.J.: The prediction of the elastic critical load of submerged elliptical cylindrical shell based on the vibro-acoustic model. Thin Walled Struct. 84, 255–262 (2014)

    Article  Google Scholar 

  • Mantari, J.L., Oktem, A.S., Guedes Soares, C.: Bending and free vibration analysis of isotropic and multilayered plates and shells by using a new accurate higher-order shear deformation theory. Compos. B Eng. 43, 3348–3360 (2012)

    Article  Google Scholar 

  • Mirzaei, M., Kiani, Y.: Thermal buckling of temperature dependent FG-CNT reinforced composite plates. Meccanica 51, 2185–2201 (2016)

    Article  MathSciNet  Google Scholar 

  • Phung-Van, P., De Lorenzis, L., Thai, C.H., Abdel-Wahab, M., Nguyen-Xuan, H.: Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements. Comput. Mater. Sci. 96, 495–505 (2015)

    Article  Google Scholar 

  • Pradyumna, S., Bandyopadhyay, J.N.: Dynamic instability behavior of laminated hypar and conoid shells using a higher-order shear deformation theory. Thin Walled Struct. 49, 77–84 (2011)

    Article  Google Scholar 

  • Reddy, J.N.: Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  • Shen, H.S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Article  Google Scholar 

  • Shen, H.S.: Nonlinear vibration of shear deformable FGM cylindrical shells surrounded by an elastic medium. Compos. Struct. 94, 1144–1154 (2012)

    Article  Google Scholar 

  • Shen, H.-S., Xiang, Y.: Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Comput. Methods Appl. Mech. Eng. 213–216, 196–205 (2012)

    Article  MathSciNet  Google Scholar 

  • Tu, T.M., Thach, L.N., Quoc, T.H.: Finite element modeling for bending and vibration analysis of laminated and sandwich composite plates based on higher-order theory. Comput. Mater. Sci. 49, S390–S394 (2010)

    Article  Google Scholar 

  • Xie, F., Qu, Y., Zhang, W., Peng, Z., Meng, G.: Nonlinear aerothermoelastic analysis of composite laminated panels using a general higher-order shear deformation zig-zag theory. Int. J. Mech. Sci. 150, 226–237 (2019)

    Article  Google Scholar 

  • Xu, Z., Gardner, L., Sadowski, A.J.: Nonlinear stability of elastic elliptical cylindrical shells under uniform bending. Int. J. Mech. Sci. 128–129, 593–606 (2017)

    Article  Google Scholar 

  • Xuebin, L.: Study on free vibration analysis of circular cylindrical shells using wave propagation. J. Sound Vib. 311, 667–682 (2008)

    Article  Google Scholar 

  • Zarei, H., Fallah, M., Bisadi, H., Daneshmehr, A.R., Minak, G.: Multiple impact response of temperature-dependent carbon nanotube-reinforced composite (CNTRC) plates with general boundary conditions. Compos. B Eng. 113, 206–217 (2017)

    Article  Google Scholar 

  • Zhang, G.J., Li, T.Y., Zhu, X., Yang, J., Miao, Y.Y.: Free and forced vibration characteristics of submerged finite elliptic cylindrical shell. Ocean Eng. 129, 92–106 (2017)

    Article  Google Scholar 

Download references

Funding

This work has been supported/partly supported by Vietnam National University, Hanoi (VNU), under Project No. QG.18.37.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Quoc Quan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$ \begin{aligned} \Delta & = A_{11} A_{22} - A_{12}^{2} ,\,\,I_{11}^{{}} = \frac{{A_{22} }}{\Delta },\,\,I_{12}^{{}} = \frac{{A_{12} }}{\Delta },\,\,I_{13}^{{}} = \frac{{B_{12} A_{12} - B_{11} A_{22} }}{\Delta },\,\,\,I_{14}^{{}} = \frac{{B_{22} A_{12} - B_{12} A_{22} }}{\Delta }, \\ I_{15}^{{}} & = \frac{{E_{12} A_{12} - E_{11} A_{22} }}{\Delta },\,\,I_{16}^{{}} = \frac{{E_{22} A_{12} - E_{12} A_{22} }}{\Delta },\,\,I_{17}^{{}} = \frac{{A_{22} }}{\Delta },\,I_{18}^{{}} = - \frac{{A_{12} }}{\Delta }, \\ I_{21}^{{}} & = \frac{{A_{11} }}{\Delta },\,\,I_{23}^{{}} = \frac{{B_{11} A_{12} - B_{12} A_{11} }}{\Delta },\,I_{24}^{{}} = \frac{{B_{12} A_{12} - B_{22} A_{11} }}{\Delta },\,\,I_{25}^{{}} = \frac{{E_{11} A_{12} - E_{12} A_{11} }}{\Delta }\,, \\ I_{26}^{{}} & = \frac{{E_{12} A_{12} - E_{22} A_{11} }}{\Delta },\,I_{27}^{{}} = - \frac{{A_{12} }}{\Delta },\,\,I_{28}^{{}} = \frac{{A_{11} }}{\Delta },\,\,\,I_{31}^{{}} = \frac{1}{{A_{66} }},\,\,I_{32}^{{}} = - \frac{{B_{66} }}{{A_{66} }},\,\,I_{33}^{{}} = - \frac{{E_{66} }}{{A_{66} }}. \\ \end{aligned} $$

Appendix B

$$ \begin{aligned} \overline{{I_{1} }} & = I_{1} ,\overline{{I_{1}^{*} }} = I_{1} + \frac{{2I_{2} }}{R},\;\overline{{I_{2} }} = I_{2} - c_{1} I_{4} ,\;\overline{{I_{2}^{*} }} = I_{2} + \frac{{I_{3} }}{R} - c_{1} I_{4} - \frac{{c_{1} I_{5} }}{R}, \\ \overline{{I_{3} }} & = c_{1} I_{4} ,\overline{{I_{3}^{*} }} = c_{1} I_{4} + \frac{{c_{1} I_{5} }}{R},\;\overline{{I_{4} }} = \overline{{I_{4}^{*} }} = I_{3} - 2c_{1} I_{5} + c_{1}^{2} I_{7} ,\;\overline{{I_{5} }} = \overline{{I_{5}^{*} }} = c_{1} I_{5} - c_{1}^{2} I_{7} . \\ \end{aligned} $$

Appendix C

$$ \begin{aligned} X_{11} & = A_{44} - 6c_{1} D_{44} + 9c_{1}^{2} F_{44} ,\,\,X_{12} = A_{55} - 6c_{1} D_{55} + 9c_{1}^{2} F_{55} ,\,\,X_{13} = - c_{1}^{2} (E_{11} I_{15}^{{}} + E_{12} I_{25}^{{}} + H_{11} ),\,\, \\ X_{14} & = - c_{1}^{2} (4E_{66} I_{33}^{{}} + 4H_{66} + E_{11} I_{16} + E_{12} I_{26} + 2H_{12} + E_{12} I_{15} + E_{22} I_{25} ),\,\, \\ X_{15} & = - c_{1}^{2} (E_{12} I_{16} + E_{22} I_{26} + H_{22} ),\,\,X_{16} = c_{1} (E_{11} I_{13} - c_{1} E_{11} I_{15} + F_{11} - c_{1} H_{11} + E_{12} I_{23} - c_{1} E_{12} I_{25} ), \\ X_{17} & = c_{1} (2E_{66} I_{32} - 2c_{1} E_{66} I_{33} + 2F_{66} - 2c_{1} H_{66} + c_{1} E_{12} I_{13} - c_{1} E_{12} I_{15} + F_{12} - c_{1} H_{12} + E_{22} I_{23} - c_{1} E_{22} I_{25} ), \\ X_{18} & = c_{1} \left( {E_{12} I_{14} - c_{1} E_{12} I_{16} + E_{22} I_{24} - c_{1} E_{22} I_{26} + F_{22} - c_{1} H_{22} } \right),\,\, \\ X_{19} & = c_{1} (2E_{66} I_{32} - 2c_{1} E_{66} I_{33} + 2F_{66} - 2c_{1} H_{66} + E_{11} I_{14} - c_{1} E_{11} I_{16} + E_{12} I_{24} - c_{1} E_{12} I_{26} + F_{12} - c_{1} H_{12} ), \\ X_{110} & = - c_{1} (E_{11} I_{12} - E_{12} I_{21} ),\,\,X_{111} = - c_{1} (2E_{66} I_{31} - E_{11} I_{11} + 2E_{12} I_{12} - E_{22} I_{21} ),\,\,X_{112} = c_{1} (E_{12} I_{11} - E_{22} I_{12} ), \\ X_{21} & = - A_{44} + 6c_{1} D_{44} - 9c_{1}^{2} F_{44} ,\,\,X_{22} = - c_{1} (B_{11} I_{15} + F_{11} + B_{12} I_{25} - c_{1} E_{11} I_{15} - c_{1} H_{11} - c_{1} E_{12} I_{25} ), \\ X_{23} & = - c_{1} (B{}_{11}I_{16} + B_{12} I_{26} + F_{12} + 2B_{66} I_{33} + 2F_{66} - 2c_{1} E_{66} I_{33} - 2c_{1} H_{66} - c_{1} E_{11} I_{16} - c_{1} E_{12} I_{26} - c_{1} H_{12} ), \\ X_{24} & = B_{11} I_{13} - c_{1} B_{11} I_{15} + D_{11} - c_{1} F_{11} + B_{12} I_{23} - c_{1} B_{12} I_{25} - c_{1} E_{11} I_{13} + c_{1}^{2} E_{11} I_{15} - c_{1} F_{11} + c_{1}^{2} H_{11} \\ & \quad - \,c_{1} E_{12} I_{23} + c_{1}^{2} E_{12} I_{25} ,\,\,X_{25} = B_{66} I_{32} - c_{1} B_{66} I_{33} + D_{66} - c_{1} F_{66} - c_{1} E_{66} I_{32} + c_{1}^{2} E_{66} I_{33} - c_{1} F_{66} + c_{1}^{2} H_{66} , \\ X_{26} & = B_{11} I_{14} - c_{1} B_{11} I_{16} + B_{12} I_{24} - c_{1} B_{12} I_{26} + D_{12} - c_{1} F_{12} + B_{66} I_{32} - c_{1} B_{66} I_{33} + D_{66} - c_{1} F_{66} - c_{1} E_{66} I_{32} \\ & \quad + \,c_{1}^{2} E_{66} I_{33} - c_{1} F_{66} + c_{1}^{2} H_{66} - c_{1} E_{11} I_{14} + c_{1}^{2} E_{11} I_{16} - c_{1} E_{12} I_{24} + c_{1}^{2} E_{12} I_{26} - c_{1} F_{12} + c_{1}^{2} H_{12} , \\ X_{27} & = - B_{11} I_{12} + B_{12} I_{21} + c_{1} E_{11} I_{12} - c_{1} E_{12} I_{21} , \\ X_{28} & = B_{11} I_{11} - B_{12} I_{12} - B_{66} I_{31} - c_{1} E_{11} I_{11} + c_{1} E_{12} I_{12} + c_{1} E_{66} I_{31} ,\,\,X_{31} = - A_{55} + 6c_{1} D_{55} - 9c_{1}^{2} F_{55} , \\ X_{32} & = - c_{1} (2B_{66} I_{33} + 2F_{66} + B_{12} I_{15} + F_{12} + B_{22} I_{25} - 2c_{1} E_{66} I_{33} - 2c_{1} H_{66} - c_{1} E_{12} I_{15} - c_{1} H_{12} - c_{1} E_{22} I_{25} ), \\ X_{33} & = - c_{1} (B_{12} I_{16} + B_{22} I_{26} + F_{22} - c_{1} E_{12} I_{16} - \,c_{1} E_{22} I_{26} - c_{1} H_{22} ), \\ X_{34} & = B_{66} I_{32} - c_{1} B_{66} I_{33} + D_{66} - c_{1} F_{66} + B_{12} I_{13} - c_{1} B_{12} I_{15} + D_{12} - c_{1} F_{12} + B_{22} I_{23} - \,c_{1} B_{22} I_{25} - c_{1} E_{66} I_{32} \\ & \quad + \,c_{1}^{2} E_{66} I_{33} - c_{1} F_{66} + c_{1}^{2} H_{66} - c_{1} E_{12} I_{13} + c_{1}^{2} E_{12} I_{15} - c_{1} F_{12} + c_{1}^{2} H_{12} - c_{1} E_{22} I_{23} + \,c_{1}^{2} E_{22} I_{25} , \\ X_{35} & = B_{66} I_{32} - c_{1} B_{66} I_{33} + D_{66} - c_{1} F_{66} - c_{1} E_{66} I_{32} + c_{1}^{2} E_{66} I_{33} - c_{1} F_{66} + c_{1}^{2} H_{66} , \\ \end{aligned} $$
$$ \begin{aligned} X_{36} & = B_{12} I_{14} - c_{1} B_{12} I_{16} + B_{22} I_{24} - c_{1} B_{22} I_{26} + D_{22} - c_{1} F_{22} - c_{1} E_{12} I_{14} + c_{1}^{2} E_{12} I_{16} - c_{1} E_{22} I_{24} \\ & \quad + \,c_{1}^{2} E_{22} I_{26} - c_{1} F_{22} + c_{1}^{2} H_{22} ,\,\,X_{37} = - B_{66} I_{31} - B_{12} I_{12} + B_{22} I_{21} + c_{1} E_{66} I_{31} + c_{1} E_{12} I_{12} - c_{1} E_{22} I_{21} , \\ X_{38} & = B_{12} I_{11} - B_{22} I_{12} - c_{1} E_{12} I_{11} + c_{1} E_{22} I_{12} . \\ \end{aligned} $$

Appendix D

$$ \begin{aligned} J_{1} & = I_{31}^{{}} - 2I_{12}^{{}} ,\,\,J_{2} = I_{23}^{{}} - c_{1} I_{25}^{{}} ,\,\,J_{3} = I_{13}^{{}} - c_{1} I_{15}^{{}} - I_{32}^{{}} + c_{1} I_{33}^{{}} , \\ J_{4} & = I_{14}^{{}} - c_{1} I_{16}^{{}} ,\,J_{5} = I_{24}^{{}} - c_{1} I_{26}^{{}} - I_{32}^{{}} + c_{1} I_{33}^{{}} ,\,\,J_{6} = - c_{1} I_{15}^{{}} - c_{1} I_{26}^{{}} + 2c_{1} I_{33}^{{}} . \\ \end{aligned} $$

Appendix E

$$ \begin{aligned} & r_{11} = - k_{1} - k_{2} \left( {\lambda_{m}^{2} + \delta_{n}^{2} } \right) + X_{13} \lambda_{m}^{4} + X_{14} \lambda_{m}^{2} \delta_{n}^{2} + X_{15} \delta_{n}^{4} + X_{110} Q_{1} \lambda_{m}^{4} + X_{111} Q_{1} \lambda_{m}^{2} \delta_{n}^{2} + X_{112} Q_{1} \delta_{n}^{4} \\ & - \,Q_{1} \frac{{\lambda_{m}^{2} }}{R},\,\,r_{12} = - X_{11} \lambda_{m} + X_{16} \lambda_{m}^{3} + X_{17} \lambda_{m} \delta_{n}^{2} + X_{110} Q_{2} \lambda_{m}^{4} + X_{111} Q_{2} \lambda_{m}^{2} \delta_{n}^{2} + X_{112} Q_{2} \delta_{n}^{4} \\ & - \,Q_{2} \frac{{\lambda_{m}^{2} }}{R},\,\,r_{13} = - X_{12} \delta_{n} + X_{18} \delta_{n}^{3} + X_{19} \lambda_{m}^{2} \delta_{n}^{{}} + X_{110} Q_{3} \lambda_{m}^{4} + X_{111} Q_{3} \lambda_{m}^{2} \delta_{n}^{2} + X_{112} Q_{3} \delta_{n}^{4} \\ & - \,Q_{3} \frac{{\lambda_{m}^{2} }}{R},\,\,r_{14} = \frac{{32Q_{2} \lambda_{m} \delta_{n} }}{3LR\pi },\,\,r_{15} = \frac{{32Q_{3} \lambda_{m} \delta_{n} }}{3LR\pi },\,\,n_{1} = - X_{11} \lambda_{m}^{2} - X_{12} \delta_{n}^{2} ,\,\,n_{2} = \frac{{32Q_{1} \lambda_{m} \delta_{n} }}{3LR\pi }, \\ \end{aligned} $$
$$ \begin{aligned} n_{3} & = \frac{{2\delta_{n} }}{{3LR\pi I_{21}^{{}} \lambda_{m} R}} - \frac{{8X_{110} \lambda_{m} \delta_{n} }}{{3LR\pi I_{21}^{{}} }} - \frac{{8X_{112} \lambda_{m} \delta_{n} }}{{3LR\pi I_{11}^{{}} }},\,\,n_{4} = - \frac{{\lambda_{m}^{4} }}{{16I_{11}^{{}} }} - \frac{{\delta_{n}^{4} }}{{16I_{21}^{{}} }},\,\,n_{5} = \frac{16}{{mn\pi^{2} }}, \\ r_{21} & = - \lambda_{m}^{3} (X_{22} + Q_{1} X_{27} ) - \lambda_{m} \delta_{n}^{2} (X_{23} + Q_{1} X_{28} ),\,\,r_{22} = X_{21} - X_{24} \lambda_{m}^{2} - X_{25} \delta_{n}^{2} - X_{27} Q_{2} \lambda_{m}^{3} - X_{28} Q_{2} \lambda_{m} \delta_{n}^{2} , \\ r_{23} & = - X_{26} \lambda_{m} \delta_{n} - X_{27} Q_{3} \lambda_{m}^{3} - X_{28} Q_{3} \lambda_{m} \delta_{n}^{2} ,\,\,n_{6} = X_{21} \lambda_{m} ,\,\,n_{7} = \frac{{8X_{27} \delta_{n} }}{{3LR\pi I_{21}^{{}} }}, \\ r_{31} & = - \delta_{n}^{3} (X_{33} + Q_{1} X_{38} ) - \lambda_{m}^{2} \delta_{n}^{{}} (X_{32} + Q_{1} X_{37} ),\,\,r_{32} = - X_{34} \lambda_{m} \delta_{n} - X_{38} Q_{2} \delta_{n}^{3} - D_{37} Q_{2} \lambda_{m}^{2} \delta_{n}^{{}} , \\ r_{33} & = X_{31} - X_{35} \lambda_{m}^{2} - X_{36} \delta_{n}^{2} - \,X_{38} Q_{3} \delta_{n}^{3} - X_{37} Q_{3} \lambda_{m}^{2} \delta_{n}^{{}} ,\,\,n_{8} = X_{31} \delta_{n} ,\,\,n_{9} = \frac{{8X_{38} \lambda_{m} }}{{3LR\pi I_{11}^{{}} }}. \\ \end{aligned} $$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dat, N.D., Quan, T.Q. & Duc, N.D. Nonlinear thermal vibration of carbon nanotube polymer composite elliptical cylindrical shells. Int J Mech Mater Des 16, 331–350 (2020). https://doi.org/10.1007/s10999-019-09464-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-019-09464-y

Keywords

  • Nonlinear thermal vibration
  • The carbon nanotube polymer composite elliptical cylindrical shells
  • The Reddy’s higher order shear deformation shell theory
  • Elastic foundations