Geometrically nonlinear bending of functionally graded nanocomposite trapezoidal plates reinforced with graphene platelets (GPLs)

Abstract

This paper investigates the nonlinear bending behaviours of functionally graded trapezoidal nanocomposite plates reinforced with graphene platelets (GPLs) under thermo-mechanical loading by employing finite element method. The modified Halpin–Tsai model and rule of mixtures are adopted to determine the Young’s modulus, Poisson’s ratio and the thermal expansion coefficient of the nanocomposites. The influences of a number of factors, including the distribution pattern, concentration and size of GPLs, plate geometry and temperature, on the nonlinear bending of the nanocomposite plates are comprehensively investigated. Numerical results demonstrate that dispersing a small amount of GPLs into nanocomposites can significantly enhance the nonlinear bending performance of the trapezoidal plates. The trapezoidal plates with more GPLs dispersing close to the top and bottom surfaces has the minimum bending deflection and are less sensitive to the temperature increases. GPLs with fewer layers and larger surface area are better reinforcing fillers than their counterparts. Moreover, the plates with bigger bottom angles are found to have better bending performances. However, when the bottom angles are greater than 75°, the variation of the bottom angles will have limited effects on the bending behaviours of the trapezoidal plates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alzebdeh, K.: Evaluation of the in-plane effective elastic moduli of single-layered graphene sheet. Int. J. Mech. Mater. Des. 8(3), 269–278 (2012)

    Article  Google Scholar 

  2. Chen, D., Yang, J., Kitipornchai, S.: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 142(Supplement C), 235–245 (2017)

    Article  Google Scholar 

  3. Feng, C., Kitipornchai, S., Yang, J.: Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos. B Eng. 110(Supplement C), 132–140 (2017a)

    Article  Google Scholar 

  4. Feng, C., Kitipornchai, S., Yang, J.: Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng. Struct. 140(Supplement C), 110–119 (2017b)

    Google Scholar 

  5. Feng, C., Wang, Y., Kitipornchai, S., Yang, J.: Effects of reorientation of graphene platelets (GPLs) on Young’s modulus of polymer nanocomposites under uni-axial stretching. Polymers 9(10), 532 (2017c)

    Article  Google Scholar 

  6. Feng, C., Wang, Y., Yang, J.: Effects of reorientation of graphene platelets (GPLs) on Young’s modulus of polymer composites under bi-axial stretching. Nanomaterials 8(1), 27 (2018)

    Article  Google Scholar 

  7. Gholami, R., Ansari, R.: Large deflection geometrically nonlinear analysis of functionally graded multilayer graphene platelet-reinforced polymer composite rectangular plates. Compos. Struct. 180, 760–771 (2017)

    Article  Google Scholar 

  8. Han, W., Petyt, M.: Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical finite element method—I: the fundamental mode of isotropic plates. Comput. Struct. 63(2), 295–308 (1997). https://doi.org/10.1016/s0045-7949(96)00345-8

    Article  MATH  Google Scholar 

  9. Ji, X.-Y., Cao, Y.-P., Feng, X.-Q.: Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Model. Simul. Mater. Sci. Eng. 18(4), 045005 (2010)

    Article  Google Scholar 

  10. Jiang, G.Q., Li, F.M., Li, X.W.: Nonlinear vibration analysis of composite laminated trapezoidal plates. Steel Compos Struct 21(2), 395–409 (2016). https://doi.org/10.12989/scs.2016.21.2.395

    Article  Google Scholar 

  11. Kiani, Y., Mirzaei, M.: Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements. Compos. Struct. 186, 114–122 (2018)

    Article  Google Scholar 

  12. Kumar, A., Singha, M., Tiwari, V.: Nonlinear bending and vibration analyses of quadrilateral composite plates. Thin Walled Struct. 113, 170–180 (2017)

    Article  Google Scholar 

  13. Kundalwal, S., Shingare, K., Rathi, A.: Effect of flexoelectricity on the electromechanical response of graphene nanocomposite beam. Int. J. Mech. Mater. Des. 1–24 (2018)

  14. Le, M.-Q.: Prediction of Young’s modulus of hexagonal monolayer sheets based on molecular mechanics. Int. J. Mech. Mater. Des. 11(1), 15–24 (2015)

    Article  Google Scholar 

  15. Leung, A.Y.T., Zhu, B.: Geometric nonlinear vibration of clamped Mindlin plates by analytically integrated trapezoidal p-element. Thin Walled Struct. 42(7), 931–945 (2004). https://doi.org/10.1016/j.twas.2004.03.010

    Article  Google Scholar 

  16. Park, Y.T., Qian, Y.Q., Chan, C., Suh, T., Nejhad, M.G., Macosko, C.W., Stein, A.: Epoxy toughening with low graphene loading. Adv. Funct. Mater. 25(4), 575–585 (2015). https://doi.org/10.1002/adfm.201402553

    Article  Google Scholar 

  17. Potts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S.: Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011). https://doi.org/10.1016/j.polymer.2010.11.042

    Article  Google Scholar 

  18. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884–3890 (2009a). https://doi.org/10.1021/nn9010472

    Article  Google Scholar 

  19. Rafiee, M.A., Rafiee, J., Yu, Z.Z., Koratkar, N.: Buckling resistant graphene nanocomposites. Appl. Phys. Lett. 95(22), 223103 (2009b). https://doi.org/10.1063/1.3269637

    Article  Google Scholar 

  20. Rahman, R., Haque, A.: Molecular modeling of crosslinked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties. Compos. B Eng. 54, 353–364 (2013)

    Article  Google Scholar 

  21. Reimanis, I.E.: Functionally graded materials. Handbook of advanced materials, pp. 465–486 (2004)

  22. Sahmani, S., Aghdam, M.: Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams. Compos. Struct. 179, 77–88 (2017)

    Article  Google Scholar 

  23. Shen, H.-S., Xiang, Y., Lin, F.: Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments. Compos. Struct. 170, 80–90 (2017a)

    Article  Google Scholar 

  24. Shen, H.-S., Xiang, Y., Lin, F.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments. Comput. Methods Appl. Mech. Eng. 319, 175–193 (2017b)

    MathSciNet  Article  Google Scholar 

  25. Shen, H.-S., Xiang, Y., Lin, F., Hui, D.: Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments. Compos. B Eng. 119, 67–78 (2017c)

    Article  Google Scholar 

  26. Shufrin, I., Rabinovitch, O., Eisenberger, M.: A semi-analytical approach for the geometrically nonlinear analysis of trapezoidal plates. Int. J. Mech. Sci. 52(12), 1588–1596 (2010)

    Article  Google Scholar 

  27. Singha, M., Daripa, R.: Nonlinear vibration of symmetrically laminated composite skew plates by finite element method. Int. J. Non-Linear Mech. 42(9), 1144–1152 (2007)

    Article  Google Scholar 

  28. Song, M., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017a)

    Article  Google Scholar 

  29. Song, M., Yang, J., Kitipornchai, S.: Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Part B: Eng. 13, 106–113 (2017b)

    Google Scholar 

  30. Spanos, K., Georgantzinos, S., Anifantis, N.: Mechanical properties of graphene nanocomposites: a multiscale finite element prediction. Compos. Struct. 132, 536–544 (2015)

    Article  Google Scholar 

  31. Sun, R., Li, L., Feng, C., Kitipornchai, S., Yang, J.: Tensile behavior of polymer nanocomposite reinforced with graphene containing defects. Eur. Polym. J. 98, 475–482 (2018)

    Article  Google Scholar 

  32. Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M., Carrera, E.: Stress, vibration and buckling analyses of FGM plates: a state-of-the-art review. Compos. Struct. 120, 10–31 (2015). https://doi.org/10.1016/j.compstruct.2014.09.070

    Article  Google Scholar 

  33. Watts, G., Pradyumna, S., Singha, M.K.: Nonlinear analysis of quadrilateral composite plates using moving kriging based element free Galerkin method. Compos. Struct. 159, 719–727 (2017). https://doi.org/10.1016/j.compstruct.2016.09.100

    Article  Google Scholar 

  34. Wu, H., Yang, J., Kitipornchai, S.: Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos. Struct. 162(Supplement C), 244–254 (2017)

    Article  Google Scholar 

  35. Yang, B., Yang, J., Kitipornchai, S.: Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity. Meccanica 52(10), 2275–2292 (2016)

    MathSciNet  Article  Google Scholar 

  36. Yang, J., Wu, H., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161(Supplement C), 111–118 (2017)

    Article  Google Scholar 

  37. Zhao, X., Zhang, Q.H., Chen, D.J., Lu, P.: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43(5), 2357–2363 (2010). https://doi.org/10.1021/ma902862u

    Article  Google Scholar 

  38. Zhao, Z., Feng, C., Wang, Y., Yang, J.: Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs). Compos. Struct. 180(Supplement C), 799–808 (2017)

    Article  Google Scholar 

  39. Zheng, C., Zhou, X., Cao, H., Wang, G., Liu, Z.: Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J. Power Sources 258, 290–296 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work described in the present paper is fully funded by research Grants from the Australian Research Council under Discovery Project scheme (DP160101978) and Linkage Project scheme (LP140100747). The authors are grateful for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jie Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Feng, C., Dong, Y. et al. Geometrically nonlinear bending of functionally graded nanocomposite trapezoidal plates reinforced with graphene platelets (GPLs). Int J Mech Mater Des 15, 791–800 (2019). https://doi.org/10.1007/s10999-019-09442-4

Download citation

Keywords

  • Nonlinear bending
  • Trapezoidal plate
  • Functionally graded nanocomposite
  • Graphene platelets
  • Thermo-mechanical loading