Intelligent tribological surfaces: from concept to realization using additive manufacturing

Abstract

In this paper, we provide a detailed account of our efforts in the design, development and prototyping of a novel intelligent surface by adapting initially curved diaphragms. Unlike the shortcomings that characterize current designs of functional surfaces, our adaptive surface design is characterised by simplicity, multifunctionality, adaptability, high flexibility and robustness as well as controlled autonomy. Four aspects of the work are accordingly examined. The first is concerned with the conceptual design of the new functional surface. The second with the development of functional prototypes of intelligent surfaces, showing its characteristics and ease of manufacturing using 3D additive manufacturing. The third with demonstrating the multi-frictional ability of the newly designed surface. Our friction test results show wide range friction control ability from the friction coefficient value 0.3 (same value of material itself) to 3 times higher value 1.1. Finally, we address the challenges that are faced in our new design and the efforts that are currently being adopted to overcome them.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abdullah, J.E., Majid, L.D., Romli, I.F., Gaikwad, S.P., Yuan, G.L., Harun, F.N.: Active control of strain in a composite plate using shape memory alloy actuators. Int. J. Mech. Mater. Des. 11, 25–39 (2015)

    Article  Google Scholar 

  2. Agwa, M.A., Taha, I., Megahed, M.: Experimental and analytical investigation of water diffusion process in nano-carbon/alumina/silica filled epoxy nanocomposites. Int. J. Mech. Mater. Des. 13, 607–615 (2017)

    Article  Google Scholar 

  3. Benafan, O., Brown, J., Calkins, T.F., Kumar, P., Stebner, P.A., Turner, L.T., Vaidyanathan, R., Webster, L., Young, L.M.: Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int. J. Mech. Mater. Des. 10, 1–42 (2014)

    Article  Google Scholar 

  4. Bifano, T.G., Perreault, J., Mali, R.K., Horenstein, M.N.: Microelectromechanical deformable mirrors. IEEE J. Sel. Top. Quantum Elect. 5, 83–89 (1999)

    Article  Google Scholar 

  5. Drexler, W., Fujimoto, J.G.: State-of-art retinal optical coherence tomography. Prog. Rretin. Eye Res. 27, 45–88 (2008)

    Article  Google Scholar 

  6. Esfahani, A.M., Bahrami, M.: Vibration analysis of a circular thin polymeric piezoelectric diaphragm with fluid interaction. Int. J. Mech. Mater. Des. 12, 401–411 (2016)

    Article  Google Scholar 

  7. Frazier, W.E.: Metal additive manufacturing: a review. J. Mater. Eng. Perfor. 23, 1917–1928 (2014)

    Article  Google Scholar 

  8. Ganesh, V.A., Raut, H.K., Nair, A.S., Ramakrishna, S.: A review on self-cleaning coatings. J. Mater. Chem. 21, 16304–16322 (2011)

    Article  Google Scholar 

  9. Giannatsis, J., Dedoussis, V.: Additive fabrication technologies applied to medicine and health care: a review. Int. J. Adv. Manuf. Technol. 40, 116–127 (2009)

    Article  Google Scholar 

  10. Goto, M.: Preparations and tribological properties of soft-metal/DLC composite coatings by RF magnetron sputter using composite targets. Int. J. Mech. Mater. Des. 14, 313–327 (2018)

    Article  Google Scholar 

  11. Grosch, K.A.: The relation between the friction and visco-elastic properties of rubber. Proc. R. Soc. A 274, 21–39 (1963)

    Article  Google Scholar 

  12. Hasheminejad, M.S., Oveisi, A.: Active vibration control of an arbitrary thick smart cylindrical panel with optimally placed piezoelectric sensor/actuator pairs. Int. J. Mech. Mater. Des. 12, 1–16 (2016)

    Article  Google Scholar 

  13. Huang, S.H., Liu, P., Mokasdar, A., Hou, L.: Additive manufacturing and its social impact: a literature review. Int. J. Adv. Manuf. Technol. 67, 1191–1203 (2013)

    Article  Google Scholar 

  14. Jain, K.R., Majumder, S., Ghosh, B.: Design and analysis of piezoelectric actuator for micro gripper. Int. J. Mech. Mater. Des. 11, 253–276 (2015)

    Article  Google Scholar 

  15. Jiang, X., Takayama, S., Qian, X., Ostuni, E., Wu, H., Bowden, N., LeDuc, P., Ingber, D.E., Whitesides, G.M.: Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane). Langmuir 18, 3273–3280 (2002)

    Article  Google Scholar 

  16. Kim, Y.C., Cho, M.H., Kim, S.J., Jang, H.: The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials. Wear 264, 204–210 (2008)

    Article  Google Scholar 

  17. Kivi, R.A., Azizi, S., Khalkhali, A.: Sensitivity enhancement of a MEMS sensor in nonlinear regime. Int. J. Mech. Mater. Des. 12, 337–351 (2016)

    Article  Google Scholar 

  18. Levy, G.N., Schindel, R., Kruth, J.P.: Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann. Manuf. Technol. 52, 589–609 (2003)

    Article  Google Scholar 

  19. Long, C.S., Loveday, P.W., Forbes, A.: Zernike polynomial based Rayleigh–Ritz model of a piezoelectric unimorph deformable mirror. Int. J. Mech. Mater. Des. 8, 237–245 (2012)

    Article  Google Scholar 

  20. Long Jr., H.J., Hale, M.E., Mchenry, M.J., Westneat, M.W.: Functions of fish skin: flexural stiffness and steady swimming of longnose gar lepisosteus osseus. J. Exp. Biol. 199, 2139–2151 (1996)

    Google Scholar 

  21. Mittal, K.L.: Contact Angle, Wettability and Adhesion, Volume 2. VSP BV (2002)

  22. Muller, S., Uchanski, M., Hedrick, K.: Estimation of the maximum tire-road friction coefficient. J. Dyn. Sys. Meas. Control 125, 608–617 (2003)

    Article  Google Scholar 

  23. Murr, L.E., Gaytan, S.M., Medina, F., Lopez, H., Martinez, E., Machado, B.I., Hernandez, D.H., Martinez, L., Lopez, M.I., Wicker, R.B., Bracke, J.: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos. Trans. Royal Soc. A. 268, 1999–2032 (2010)

    Article  Google Scholar 

  24. Ohzono, T., Fukuda, J.: Zigzag line defects and manipulation of colloids in a nematic liquid crystal in microwrinkle grooves. Nat. Commun. 3, 1–7 (2012)

    Article  Google Scholar 

  25. Ohzono, T., Hirai, Y., Suzuki, K., Shimomura, M., Uchida, N.: Reinforced shape-tunable microwrinkles formed on a porous-film-embedded elastomer surface. Soft Matter 10, 7165–7169 (2014)

    Article  Google Scholar 

  26. Ohzono, T., Shimomura, M.: Simulation of strain-induced microwrinkle pattern dynamics with memory effect. Jpn. J. Appl. Phys. 44, 1055–1061 (2005)

    Article  Google Scholar 

  27. Rogers, J.A.: Slice and dice, peel and stick: emerging methods for nanostructure fabrication. ACS Nano 1, 151–153 (2007)

    Article  Google Scholar 

  28. Sherman, L., Ye, J.Y., Albert, O., Norris, T.B.: Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror. J. Microsc. 206, 65–71 (2002)

    MathSciNet  Article  Google Scholar 

  29. Shirtcliffe, N.J., McHale, G., Atherton, S., Newton, M.I.: An introduction to superhydrophobicity. Adv. Colloid Interface Sci. 161, 124–138 (2010)

    Article  Google Scholar 

  30. Suzuki, K., Ohzono, T.: Wrinkles on a textile-embedded elastomer surface with highly variable friction. Soft Matter 12, 6176–6183 (2016)

    Article  Google Scholar 

  31. Vaezi, M., Seitz, H., Yang, S.F.: A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 67, 1721–1754 (2013)

    Article  Google Scholar 

  32. Vincent, J.F.V.: Deployable structures in nature: potential for biomimicking. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 214, 1–10 (2000)

    Article  Google Scholar 

  33. Zeek, E., Maginnis, K., Backus, S., Russek, U., Murnane, M., Mourou, G., Kapteyn, H., Vdovin, G.: Pulse compression by use of deformable mirrors. Opt. Lett. 24, 493–495 (1999)

    Article  Google Scholar 

  34. Zhang, X.M., Chau, F.S., Quan, C., Lam, Y.L., Liu, A.Q.: A study of the static characteristics of a torsional micromirror. Sens. Actuators, A 90, 73–81 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor S. A. Meguid for his valued input to the article and to Mr. Prayers Roy for the finite element work. The authors are grateful to the Grant-in-Aid for Scientific Research (KAKENHI) (Grant No. 17K14577), The Hibi Science Foundation, Nagamori Foundation, Research Foundation for the Electrotechnology of Chubu and NSK Foundation for Advancement of Mechatronics for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Noritsugu Umehara.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murashima, M., Yoshino, S., Kawaguchi, M. et al. Intelligent tribological surfaces: from concept to realization using additive manufacturing. Int J Mech Mater Des 15, 757–766 (2019). https://doi.org/10.1007/s10999-018-9435-4

Download citation

Keywords

  • Intelligent surface
  • Multifunctionality
  • Morphing
  • Additive manufacturing
  • Functionalized surfaces