A novel hybrid-Trefftz finite element for symmetric laminated composite plates

  • M. C. RayEmail author


A novel hybrid-Trefftz finite element (HTFE) for the analysis of symmetric laminated composite plates has been developed. Unlike the existing HTFE formulations, the derivation of this HTFE does not require the particular solutions of simultaneous governing partial differential equations. The Trefftz functions are constructed from the exact solutions of the homogeneous simultaneous governing partial differential equations in a straight forward manner without transforming them into a single governing equation. The HTFE is validated with the authenticated exact solutions. It is observed that this HTFE is an efficient finite element for analyzing laminated composite structures.


Trefftz finite element Composite structures Finite element analysis 


  1. Cao, C., Yu, A., Qin, Q.H.: A novel hybrid finite element model for modeling anisotropic composites. Finite Elem. Anal. Des. 64, 36–47 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Cen, S., Shang, Y., Li, C.-F., Li, H.-G.: Hybrid displacement function element method: a simple hybrid-Trefftz stress element method for analysis of Mindlin-Reissner plate. Int. J. Numer. Methods Eng. 98, 203–234 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Choo, Y.S., Choi, N., Lee, B.C.: A new hybrid-Trefftz triangular and quadrilateral plate elements. Appl. Math. Model. 34, 14–23 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Fu, Z.-J., Qin, Q.H., Chen, W.: Hybrid-Trefftz finite element method for heat conduction in nonlinear functionally graded materials. Eng. Comput. 28, 578–599 (2011)CrossRefzbMATHGoogle Scholar
  5. Fu, Z.-J., Chen, W., Yang, H.-T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Fu, Z.-J., Xi, Q., Chen, W., Cheng, A.H.D.: A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations. Comput. Math. Appl. 76, 760–773 (2018)MathSciNetCrossRefGoogle Scholar
  7. Jirousek, J.: Basis for development of large finite elements locally satisfying all filed equations. Comput. Methods Appl. Mech. Eng. 14, 65–92 (1978)CrossRefzbMATHGoogle Scholar
  8. Jirousek, J., Guex, L.: The hybrid-Trefftz finite element model and its application to plate bending. Int. J. Numer. Methods Eng. 23, 651–693 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Jirousek, J., Leon, N.: A powerful finite element for plate bending. Comput. Methods Appl. Mech. Eng. 12, 77–96 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Karkon, M.: Hybrid-Trefftz formulation for analysis of anisotropic and symmetric laminated plates. Compos. Struct. 134, 460–474 (2015)CrossRefGoogle Scholar
  11. Karkon, M., Pajand-Rezaiee, M.: Hybrid-Trefftz formulation for analysis of thick orthotropic plates. Aerosp. Sci. Technol. 50, 234–244 (2016)CrossRefGoogle Scholar
  12. Kita, E., Kamiya, N.: Trefftz method: an overview. Adv. Eng. Softw. 24, 3–12 (1995)CrossRefzbMATHGoogle Scholar
  13. Natarajan, S., Annabattula, R.K., Bordas, S., Atroshchenko, E.: Trefftz polygonal finite element for linear elasticity: convergence, accuracy, and properties. Asia Pac. J. Comput. Eng. (2017). Google Scholar
  14. Pagano, N.J.: Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 4, 20–34 (1970)CrossRefGoogle Scholar
  15. Pandya, B., Kant, T.: Flexural analysis of laminated composites using refined higher-order C0 plate bending elements. Comput. Methods Appl. Mech. Eng. 66, 173–198 (1988)CrossRefzbMATHGoogle Scholar
  16. Petrolito, J.: Hybrid-Trefftz quadrilateral elements for thick plate analysis. Comput. Methods Appl. Mech. Eng. 78, 331–351 (1990)CrossRefzbMATHGoogle Scholar
  17. Petrolito, J.: Triangular thick plate elements based on a hybrid-Trefftz approach. Comput. Struct. 60, 883–894 (1996)CrossRefzbMATHGoogle Scholar
  18. Petrolito, J.: Vibration and stability analysis of thick orthotropic plates using hybrid-Trefftz elements. Appl. Math. Model. 38, 5858–5869 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Qin, Q.H.: Dual varialtional formulation for Trefftz finite element method of elastic materials. Mech. Res. Commun. 31, 321–330 (2004)CrossRefzbMATHGoogle Scholar
  20. Qin, Q.H., Wang, H.: Matlab and C Programming for Trefftz Finite Element Method. CRC Press, Boca Raton (2008)CrossRefGoogle Scholar
  21. Reddy, J.N.: Mechanics of Laminated Composite Plates Theory and Analysis. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  22. Reddy, J.N.: Energy and Variational Method in Applied Mechanics with an Introduction to the Finite Element Method, p. 110002. Wiely, New Delhi (2016)Google Scholar
  23. Rezaiee-Pajand, M., Karkon, M.: Two efficient hybrid-Trefftz elements for plate bending analysis. Latin Am. J. Solids Struct. 9, 43–67 (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations