Skip to main content
Log in

Atomic-scale finite element modelling of mechanical behaviour of graphene nanoribbons

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Experimental characterization of Graphene NanoRibbons (GNRs) is still an expensive task and computational simulations are therefore seen as a practical option to study the properties and mechanical response of GNRs. Design of GNR elements in various nanotechnology devices can be approached through molecular dynamics simulations. This study demonstrates that the atomic-scale finite element method (AFEM) based on the second generation REBO potential is an efficient and accurate alternative to the molecular dynamics simulation of GNRs. Special atomic finite elements are proposed to model graphene edges. Extensive comparisons are presented with MD solutions to establish the accuracy of AFEM. It is also shown that the Tersoff potential is not accurate for GNR modeling. The study demonstrates the influence of chirality and size on design parameters such as tensile strength and stiffness. Graphene is stronger and stiffer in the zigzag direction compared to the armchair direction. Armchair GNRs shows a minor dependence of tensile strength and elastic modulus on size whereas in the case of zigzag GNRs both modulus and strength show a significant size dependency. The size-dependency trend noted in the present study is different from the previously reported MD solutions for GNRs but qualitatively agrees with experimental results. Based on the present study, AFEM can be considered a highly efficient computational tool for analysis and design of GNRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alzebdeh, K.: Evaluation of the in-plane effective elastic moduli of single-layered graphene sheet. Int. J. Mech. Mater. Des. 8, 269 (2012). https://doi.org/10.1007/s10999-012-9193-7

    Article  Google Scholar 

  • Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  Google Scholar 

  • Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter 14, 783–802 (2002)

    Google Scholar 

  • Cao, G.: Atomistic studies of mechanical properties of graphene. Polymers (2014). https://doi.org/10.3390/polym6092404

    Google Scholar 

  • Chen, C., Hone, J.: Graphene nanoelectromechanical systems. Proc. IEEE 101(7), 1766 (2013)

    Article  Google Scholar 

  • Choi, W., Lee, J.-W. (eds.): Graphene: Synthesis and Applications. CRC Press, Boca Raton (2016)

    Google Scholar 

  • Chu, Y., Ragab, T., Basaran, C.: The size effect in mechanical properties of finite-sized graphene nanoribbon. Comput. Mater. Sci. 81, 269–274 (2014)

    Article  Google Scholar 

  • Dewapriya, M.A.N.: Molecular dynamics study of effects of geometric defects on the mechanical properties of graphene. Master’s thesis, University of British Columbia (2012)

  • Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. Int. J. Fract. (2014). https://doi.org/10.1115/1.4027681

    Google Scholar 

  • Gajbhiye, S.O., Singh, S.P.: Multiscale nonlinear frequency response analysis of single-layered graphene sheet under impulse and harmonic excitation using the atomistic finite element method. J. Phys. D Appl. Phys. 48, 145305 (2015)

    Article  Google Scholar 

  • Haile, J.M.: Molecular Dynamics Simulation. Wiley, New York (1992)

    Google Scholar 

  • Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  MathSciNet  Google Scholar 

  • Konstantinova, E., Dantas, S.O., Barone, P.M.V.B.: Electronic and elastic properties of two-dimensional carbon planes. Phys. Rev. B (2006). https://doi.org/10.1103/PhysRevB.74.035417

    Google Scholar 

  • Le, M.Q.: Prediction of Young’s modulus of hexagonal monolayer sheets based on molecular mechanics. Int. J. Mech. Mater. Des. 11, 15 (2015). https://doi.org/10.1007/s10999-014-9271-0

    Article  Google Scholar 

  • Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  • Liera, G.V., Alsenoyb, C.V., Dorenc, V.V., Geerlingsd, P.: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem. Phys. Lett. 326, 181–185 (2000)

    Article  Google Scholar 

  • Liu, B., Huang, Y., Jiang, H., Qu, S., Hwang, K.C.: The atomic-scale finite element method. Comput. Methods Appl. Mech. Eng. 193, 1849–1864 (2004)

    Article  MATH  Google Scholar 

  • Liu, B., Jiang, H., Huang, Y., Qu, S., Yu, M.-F., Hwang, K.C.: Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes. Phys. Rev. B 72, 035435 (2005)

    Article  Google Scholar 

  • Liu, F., Ming, P., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B (2007). https://doi.org/10.1103/PhysRevB.76.064120

    Google Scholar 

  • Malakouti, M., Montazeri, A.: Nanomechanics analysis of perfect and defected graphene sheets via a novel atomic scale finite element method. Superlattices (2016). https://doi.org/10.1016/j.spmi.2016.03.049

    Google Scholar 

  • Ng, T.Y., Yeo, J., Liu, Z.: Molecular dynamics simulation of the thermal conductivity of shorts strips of graphene and silicene: a comparative study. Int. J. Mech. Mater. Des. 9, 105 (2013). https://doi.org/10.1007/s10999-013-9215-0

    Article  Google Scholar 

  • Njuguna, B., Pielichowski, K.: Polymer nanocomposites for aerospace applications: properties. Adv. Eng. Mater. 5, 769–778 (2003)

    Article  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  • Shi, M.X., Li, Q.M., Liu, B., Feng, X.Q., Huang, Y.: Atomic-scale finite element analysis of vibration mode transformation in carbon nanorings and single-walled carbon nanotubes. Int. J. Solids Struct. 46, 4342–4360 (2009)

    Article  MATH  Google Scholar 

  • Shin, M.K., Kim, S.I., Kim, S.J., Kim, S.-K., Lee, H., Spinks, G.M.: Size-dependent elastic modulus of single electroactive polymer nanofibers. Appl. Phys. Lett. 89, 231929 (2006)

    Article  Google Scholar 

  • Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000)

    Article  Google Scholar 

  • Terdalkar, S.S., Huang, S., Yuan, H., Rencis, J.J., Zhu, T., Zhang, S.: Nanoscale fracture in graphene. Chem. Phys. Lett. 494, 218–222 (2010)

    Article  Google Scholar 

  • Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1987)

    Article  Google Scholar 

  • Tersoff, J.: Empirical interatomic potential for carbon with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879 (1988)

    Article  Google Scholar 

  • Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Compos. B Eng. 36, 468–477 (2005)

    Article  Google Scholar 

  • Zhao, H., Min, K., Aluru, N.R.: Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9, 3012–3015 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by the São Paulo Research Foundation (Fapesp) through Grants 2012/17948-4, 2013/23085-1, 2015/00209-2 and 2013/08293-7 (CEPID). Support from CAPES and CNPQ is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. N. D. Rajapakse.

Appendix

Appendix

1.1 Tersoff potential parameters

$$f_{c}^{T} \left( {r_{{ij}} } \right) = \left\{ {\begin{array}{*{20}l} {1,} \hfill & {r_{{ij}} < R - D} \hfill \\ {{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\sin \left[ {{{{\pi \mathord{\left/ {\vphantom {\pi 2}} \right. \kern-\nulldelimiterspace} 2}(r_{{ij}} - R)} \mathord{\left/ {\vphantom {{{\pi \mathord{\left/ {\vphantom {\pi 2}} \right. \kern-\nulldelimiterspace} 2}(r_{{ij}} - R)} D}} \right. \kern-\nulldelimiterspace} D}} \right]} \hfill & {R - D < r_{{ij}} < R + D} \hfill \\ {0,} \hfill & {r_{{ij}} > R + D} \hfill \\ \end{array} } \right.$$
(15)

The parameters R and D are not systematically optimized but are chosen so as to include the first-neighbor shell only. For C–C bonds, Tersoff (1988) presented a set of suitable values of R and D that are given below. As the parameters R and D are chosen to include only the first-neighbor interaction, thus, the cut-off function, f T c , goes from 1 to 0 within a cut-off distance R − D < rij < R + D.

$$\zeta_{ij}^{{n_{T} }} = \sum\limits_{k \ne i,j} {f_{c} \left( {r_{ik} } \right)g\left( {\theta_{ijk} } \right)} ;g\left( {\theta_{ijk} } \right) = 1 + \frac{{c^{2} }}{{d^{2} }} - \frac{{c^{2} }}{{\left[ {d^{2} + \left( {h - cos\theta_{ijk} } \right)^{2} } \right]}}$$
(16)

The bond angle θijk is defined as shown in Fig. 11.

Fig. 11
figure 11

Definition of angles in Tersoff potential

For carbon–carbon interactions these parameters are A = 1393.6 eV, B = 346.74 eV, λ1 = 3.4879, λ2 = 2.2119, R = 1.95 Å, D = 0.15 Å, \(\beta^{{n_{T} }}\) = 1.5724 × 10−7, nt = 0.72751, c = 3.8049 × 104, d = 4.3484 and h = − 0.57058 (Tersoff 1988).

1.2 Second generation REBO potential parameters

$$f_{c}^{R} \left( {r_{{ij}} } \right) = \left\{ {\begin{array}{*{20}l} {1,} \hfill & {r_{{ij}} < R^{{\left( 1 \right)}} } \hfill \\ {\left[ {1 + \cos \left[ {\frac{{\pi \left( {r_{{ij}} - R^{{\left( 1 \right)}} } \right)}}{{\left( {R^{{\left( 2 \right)}} - R^{{\left( 1 \right)}} } \right)}}} \right]} \right]} \hfill & {R^{{\left( 1 \right)}} < r_{{ij}} < R^{{\left( 2 \right)}} } \hfill \\ {0,} \hfill & {R^{{\left( 2 \right)}} < r_{{ij}} } \hfill \\ \end{array} } \right.$$
(17)

The term BR corresponds to the bond order term. It’s related with the number of neighbors and the angle, which it’s related with the forming and breaking of the bonds between of the atoms. The expression for BRis:

$$B^{R} = \frac{1}{2}\left[ {b_{ij}^{\sigma \pi } + b_{ji}^{\sigma \pi } } \right] + b_{ij}^{\pi }$$
(18)
$$b_{ij}^{\pi } = \varPi_{ij}^{rc} + b_{ij}^{dh}$$
(19)

The term b σπ ij is composed by covalent bond interactions, and by the angular function g(cosθjik), which include the contribution from the second nearest neighbour according to the cosine of the angle of the bonds between atoms ik and ij.

$$b_{ij}^{\sigma \pi } = \left[ {1 + \sum\limits_{k \ne i,j} {f_{ik} \left( {r_{ik} } \right)g\left( {\cos \theta_{jik} } \right)e^{{\lambda_{ijk} }} + P_{ij} \left( {N_{i}^{C} ,N_{i}^{H} } \right)} } \right]^{{ - \frac{1}{2}}}$$
(20)

According to Brenner et al. (2002) the parameters Pij and λijk are taken to be zero for solid-state carbon. The following equations show the angular function in three regions of bond angle θ,

For 0° < θ < 109.476°

$$g\left( {\cos \theta_{jik} } \right) = G\left( {\cos \theta_{jik} } \right) + Q\left( {N_{i}^{t} } \right)\left[ {\gamma \left( {\cos \theta_{jik} } \right) - G\left( {\cos \theta_{jik} } \right)} \right]$$
(21)
$$\begin{aligned} G\left( {\cos \theta_{jik} } \right) & = 0.5024\cos^{5} \left( \theta \right) + 1.4297\cos^{4} \left( \theta \right) + 2.0313\cos^{3} \left( \theta \right) \\ & \quad + 2.2544\cos^{2} \left( \theta \right) + 1.4068\cos \left( \theta \right) + 0.3755 \\ \end{aligned}$$
(22)
$$\begin{aligned} \gamma \left( {\cos \theta_{jik} } \right) & = - 0.0401\cos^{5} \left( \theta \right) + 1.272\cos^{4} \left( \theta \right) - 0.5597\cos^{3} \left( \theta \right) \\ & \quad - 0.4331\cos^{2} \left( \theta \right) + 0.4889\cos \left( \theta \right) + 0.2719 \\ \end{aligned}$$
(23)

For 109.476° < θ < 120°

$$g\left( {\cos \theta_{jik} } \right) = G\left( {\cos \theta_{jik} } \right)$$
$$\begin{aligned} G\left( {\cos \theta_{jik} } \right) & = 36.2789\cos^{5} \left( \theta \right) + 71.8829\cos^{4} \left( \theta \right) + 57.5918\cos^{3} \left( \theta \right) \\ & \quad + 24.0970\cos^{2} \left( \theta \right) + 5.6774\cos \left( \theta \right) + 0.7073 \\ \end{aligned}$$
(24)

For 120° < θ < 180°

$$g\left( {\cos \theta_{jik} } \right) = G\left( {\cos \theta_{jik} } \right)$$
(25)
$$\begin{aligned} G\left( {\cos \theta_{jik} } \right) & = - 1.3424\cos^{5} \left( \theta \right) - 4.928\cos^{4} \left( \theta \right) - 6.83\cos^{3} \left( \theta \right) \\ & \quad - 4.346\cos^{2} \left( \theta \right) - 1.098\cos \left( \theta \right) + 0.0026 \\ \end{aligned}$$
(26)

The function Q(N t i ) is given by

$$Q\left( {N_{i}^{t} } \right) = {\text{ }}\left\{ {\begin{array}{*{20}l} 1 \hfill & {N_{i}^{t} < 3.2} \hfill \\ {{{\left[ {1 + \cos \left( {2\pi \left( {N_{i}^{t} - 3.2} \right)} \right)} \right]} \mathord{\left/ {\vphantom {{\left[ {1 + \cos \left( {2\pi \left( {N_{i}^{t} - 3.2} \right)} \right)} \right]} 2}} \right. \kern-\nulldelimiterspace} 2}} \hfill & {3.2 < N_{i}^{t} < 3.7} \hfill \\ 0 \hfill & {N_{i}^{t} > 3.7} \hfill \\ \end{array} } \right.$$
(27)

The term N t i is the sum of the carbon atoms number and the hydrogen atoms number, in this case N H i is zero,

$$N_{i}^{t} = N_{i}^{C} + N_{i}^{H}$$
(28)
$$N_{i}^{C} = \sum\limits_{{k\left( { \ne i,j} \right)}}^{carbon atoms} {f_{ik} \left( {r_{ik} } \right)}$$
(29)

The term Π rc ij is a three-dimensional cubic spline, which depends on the number of carbon atoms that are neighbors of atoms i and j and the nonconjugated bonds.

$$\varPi_{ij}^{rc} = F_{ij} \left( {N_{i}^{t} ,N_{j}^{t} ,N_{ij}^{conj} } \right)$$
(30)
$$N_{ij}^{conj} = 1 + \left[ {\sum\limits_{{k\left( { \ne i,j} \right)}}^{carbon atoms} {f_{ik} \left( {r_{ik} } \right)F\left( {x_{ik} } \right)} } \right]^{2} + \left[ {\sum\limits_{{l\left( { \ne i,j} \right)}}^{carbon atoms} {f_{jl} \left( {r_{jl} } \right)F\left( {x_{jl} } \right)} } \right]^{2}$$
(31)
$$F\left( {x_{{ik}} } \right) = \left\{ {\begin{array}{*{20}l} 1 \hfill & {x_{{ik}} < 2} \hfill \\ {{{\left[ {1 + \cos \left( {2\pi \left( {x_{{ik}} - 2} \right)} \right)} \right]} \mathord{\left/ {\vphantom {{\left[ {1 + \cos \left( {2\pi \left( {x_{{ik}} - 2} \right)} \right)} \right]} 2}} \right. \kern-\nulldelimiterspace} 2}} \hfill & {2 < x_{{ik}} < 3} \hfill \\ 0 \hfill & {x_{{ik}} > 3} \hfill \\ \end{array} } \right.$$
(32)
$$x_{ik} = N_{k}^{t} - f_{ik} \left( {r_{ik} } \right)$$
(33)

where k, l, and j are the neighbors of atoms.

The term b dh ij is zero for graphene due to its planar configuration. All the parameters considered can be found in Stuart et al. (2000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damasceno, D.A., Mesquita, E., Rajapakse, R.K.N.D. et al. Atomic-scale finite element modelling of mechanical behaviour of graphene nanoribbons. Int J Mech Mater Des 15, 145–157 (2019). https://doi.org/10.1007/s10999-018-9403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-018-9403-z

Keywords

Navigation